

СПРАВОЧНИК ПО ЭКСПЛУАТАЦИИ Система электропитания MPS1000.200

©ISKRATEL Дальнейшее размножение и распространение этого документа, а также передача его содержания третьим лицам не разрешаются, если на это нет разрешения в письменной форме.

СОДЕРЖАНИЕ:

1.	ИНСТРУКЦИИ ПО БЕЗОПАСНОСТИ	10
2.	СИСТЕМНЫЕ ФУНКЦИИ	11
2.1.	Бесперебойное электропитание телекоммуникационного оборудования	11
2.2.	Бесперебойное электропитание телекоммуникационного оборудования переменным током 230 В	11
2.3.	Регулировка системного напряжения	11
2.4.	Ограничение зарядного тока батареи	11
2.5.	Ускоренный заряд батареи	11
2.6.	Отключение батареи при низком напряжении	11
2.7.	Выборочное выключение нагрузки при низком напряжении	12
2.8.	Управление, контроль и обслуживание системы	12
3.	ОПИСАНИЕ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ	13
3.1.	Компоненты системы MPS – вариант ETS	15
3.2.	Компоненты системы MPS – 19-дюймовый вариант с пробразователями 1800 Вт	16
3.3.	Компоненты системы MPS – 19-дюймовый вариант с пробразователями 3200 Вт	17
3.4.	Блок-схема системы MPS – ETS	18
3.5.	Схема конфигурации системы MPS – 19-дюймовый вариант	19
3.6.	Технические характеристики системы MPS	20
3.6.1.	Вариант ETS	20
3.6.2.	19-дюймовый вариант	22
4.	БЛОК РАСПРЕДЕЛЕНИЯ ПЕРЕМЕННОГО ТОКА	24
4.1.	Блок распределения переменного тока в секции MRN	24
4.1.1.	Назначение автоматических выключателей	26
4.2.	Блок распределения переменного тока в секции MRM	26
4.2.1. 4.2.2.	Трехфазное питание напряжением 230/400 В переменного тока Трехфазное питание напряжением 127/220 В переменного тока	27 29
5.	ОСНОВНОЙ БЛОК РАСПРЕДЕЛЕНИЯ ПОСТОЯННОГО ТОКА	31
5.1.	Функции блока распределения постоянного тока в секции MRN	33
5.1.1.	Защита аккумуляторных батарей	33
5.1.2.	Отключение потребителей нижнего приоритета	33
5.1.3.	Защита потребителей	34
5.1.4.	Выключение питания контрольного блока АRH	34
5.2.	Варианты оборудованности реле LVD, шунтирующими резисторами и автоматическими выключателями	34
5.2.1.	Основная секция MRN	35
5.2.2.	Дополнительные автоматические выключатели для подключения нагрузки до 50 А	35
5.2.3. 5.2.4.	Система с одним реле для отключения аккумуляторной батареи (LVD) Система электропитания с двумя реле LVD	36 38
5.2.5.	Система электропитания с двумя реле LVD с выборочным отключением нагрузки	39
5.2.6.	Система электропитания с двумя реле LVD с выборочным отключением нагрузки	41
6.	БЛОК КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ ПОСТОЯННОГО ТОКА (ARG)	43
6.1.	Функции ARG	44

ISKRATEL

6.2.	Описание разъемов	45
6.3.	Описание короткозамыкателей, предохранителей и переключателя	45
6.4.	Расположение контактов разъема	46
7.	ДОПОЛНИТЕЛЬНЫЙ БЛОК РАСПРЕДЕЛЕНИЯ ПОСТОЯННОГО ТОКА	48
7.	ДОПОЛНИТЕЛЬНЫЙ БЛОК РАСПРЕДЕЛЕНИЯ ПОСТОЯННОГО ТОКА	48
7.1.	Вторичный распределительный блок с автоматическими выключателями (FRM)	48
7.2.	Вторичный распределительный блок с пробковыми предохранителями 400 A (FRK)	49
7.2.1.	Блок-схема блока FRK	51
7.3.	Вторичный распределительный блок с пробковыми предохранителями 160 A (FRL)	52
7.3.1.	Блок-схема блока FRL	53
8.	БЛОК КОНТРОЛЯ ABTOMATИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ (ARM)	54
8.1.	Функции ARMBx	<i>55</i>
8.2.	Описание разъемов блока VRRBA	56
<i>8.3</i> .	Описание разъемов блока VRRBB	56
<i>8.4</i> .	Описание короткозамыкателей и предохранителей	56
<i>8.5.</i>	Расположение контактов разъема	57
9.	КОНТРОЛЬНЫЙ БЛОК ARH	59
9.1.	Технические характеристики контрольного блока ARH	60
9.2.	Подключение контрольного блока	60
9.3.	Основная плата (VRL)	61
9.3.1.	Описание разъемов	61
9.3.2. 9.3.3.	Описание короткозамыкателей и предохранителей Расположение контактов разъема	61 62
9.4.	Процессорная плата (CDL)	63
9.4.1.	Описание разъемов	63
9.4.2.	Описание короткозамыкателя	64
9.5.	Плата VRM – дисплей и кнопки	64
9.5.1.	Описание разъемов	64
9.6.	Функции контрольного блока	64
10.	КОНТРОЛЬНАЯ СЕКЦИЯ (MRM)	65
10.1.	Основная секция MRM	65
10.2.	Секция MRM с блоком распределения переменного тока	66
10.3.	Секция MRM с вольтодобавочными конверторами или инверторами	66
10.4.	Задняя панель BRN	67
10.4.1.	Описание разъемов	67
10.4.2. 10.4.3.	Описание короткозамыкателей и предохранителей Расположение контактов разъема	68 69
10.4.5.	Задняя панель BRM	72
10.5.1.	Описание разъемов	72
10.5.2.	Расположение контактов разъема	73
11.	СЕКЦИЯ ДОПОЛНИТЕЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙ (MRP)	74

11.1.	Описание разъемов и контактов разъема	76
12.	СЕКЦИЯ ВЫПРЯМИТЕЛЕЙ	78
12.1.	Секция выпрямителей (MRD)	78
12.1.1.	Соединительные разъемы	81
12.1.2.	Идентификация секции MRD	81
12.1.3.	Установка выпрямителей во время работы системы	82
12.2.	Секция выпрямителей (MRQ)	82
12.2.1.	Расположение разъемов	83
12.2.2.	Расположение контактов разъема	83
12.2.3. 12.2.4.	Адресация выпрямителей Соединение секции MRQ с контрольным блоком ARH	84 85
12.2.5.	Установка выпрямителей во время работы системы	85
12.3.	Секция выпрямителей MRR	86
12.3.1.	Расположение разъемов	86
12.3.2.	Расположение контактов разъема	87
12.3.3.	Адресация выпрямителей	88
12.3.4.	Соединение секции MRR с контрольным блоком	89
12.3.5.	Установка выпрямителей во время работы системы	89
13.	ВЕНТИЛЯТОРНЫЙ БЛОК (FRD)	90
14.	выпрямитель	91
14.1.	Выпрямитель 230 В перем. тока/48 В пост. тока, 1300 Вт	91
14.1.1.	Соединительный разъем	91
14.1.2.	Технические характеристики	92
14.1.3. 14.1.4.	Вольтамперная характеристика выпрямителя	95 95
14.1.4. 14.2.	Зависимость выходного напряжения U _{OUT} от напряжения U _{TVC}	96
14.2. 14.2.1.	Выпрямитель 230 В перем. тока/60 В пост. тока, 1100 Вт	96
14.2.1.	Соединительный разъем Технические характеристики	98
14.2.3.	Вольтамперная характеристика выпрямителя	100
14.2.4.	Зависимость выходного напряжения U _{OUT} от напряжения U _{TVC}	101
14.3.	Выпрямитель 230 В перем. тока/48 В пост. тока, 1800 Вт	101
14.3.1.	Соединительный разъем	102
14.3.2.	Технические характеристики	103
14.4.	Выпрямитель 230 В перем. тока/48 В пост. тока, 3200 Вт (PAI)	105
14.4.1.	Соединительные разъемы	106
14.4.2.	Технические характеристики	107
15.	ВОЛЬТОДОБАВОЧНЫЙ КОНВЕРТОР	110
15.1.	Функции вольтодобавочного конвертора	112
15.2.	Процедура в случае короткого замыкания на выходе вольтодобавочного конвертора	112
15.3.	Технические характеристики	112
15.4.	Соединительные клеммы	114
15.4.1.	Разъем А, тип Н15	114
15.4.2.	Разъем В	114
15.4.3.	Разъем С	115
16.	ИНВЕРТОР	115
16.1.	Описание работы инвертора	116

ISKRATEL

16.2.	Процедура в случае отказа инвертора при перегрузке	117
16.3.	Технические характеристики инвертора	117
16.4.	Соединительные клеммы	118
16.4.1.	Разъем А, тип Н15	118
16.4.2.	Разъем В	119
16.4.3. 16.4.4.	Разъем С Разъем D	119 119
17.	АККУМУЛЯТОРНЫЕ БАТАРЕИ	120
17.1.	Ускоренный заряд классических аккумуляторных батарей	120
18.	БЛОК ИЗМЕРЕНИЯ НАПРЯЖЕНИЯ АККУМУЛЯТОРОВ БАТАРЕИ (ARI)	121
18.1.	Функции блока ARI	121
18.2.	Описание разъемов	122
18.3.	Описание короткозамыкателей, предохранителей и кодирующего переключателя	122
18.4.	Расположение контактов разъема	123
18.5.	Подключение аккумуляторной батареи с аккумуляторами 2 В	124
18.6.	Подключение аккумуляторной батареи с аккумуляторами 4 В	125
18.7.	Подключение аккумуляторной батареи с аккумуляторами 6 В	126
18.8.	Подключение аккумуляторной батареи с аккумуляторами 12 В	127
19.	БЛОК УПРАВЛЕНИЯ РЕЛЕ (ARJ)	128
19.1.	Функции блока ARJ	128
19.2.	Описание разъемов	129
19.3.	Описание короткозамыкателей, предохранителей и кодирующего переключателя	129
19.4.	Расположение контактов разъема	130
20.	БЛОК СБОРА АВАРИЙНЫХ СИГНАЛОВ (ARK)	131
20.1.	Функции ARK	131
20.2.	Описание разъемов	132
20.3.	Описание короткозамыкателей, предохранителей и кодирующего переключателя	132
20.4.	Расположение контактов разъема	133
21.	БЛОК ИЗМЕРЕНИЯ НАПРЯЖЕНИЯ ПОСТОЯННОГО ТОКА (ARL)	134
21.1.	Функции блока ARL	134
21.2.	Описание разъемов	135
21.3.	Описание короткозамыкателей, предохранителей и кодирующего переключателя	135
21.4.	Расположение контактов разъема	136
22.	ФУНКЦИИ КОНТРОЛЬНОГО БЛОКА	137
22.1.	Конфигурация системы	138
22.1.1.	Конфигурация типа системы электропитания	139
22.1.2. 22.1.3.	Конфигурация преобразователей Конфигурация блока ARG	139 140
22.1.3.	Конфигурация блоков ARM	140

6

22.1.5.	Конфигурация предохранителей и автоматических выключателей	141
22.1.6.	Конфигурация блоков измерения напряжения аккумуляторов ARI	141
22.1.7.	Конфигурация блоков ARJ, ARK, ARL	141
22.2.	Основные функции	142
22.2.1.	Регулировка системного напряжения	142
22.2.2.	Отключение аккумуляторных батарей или нагрузки при низком напряжении или	172
~~.~.	высокой температуре	145
22.3.	ИЗМЕРИТЕЛЬНЫЕ ФУНКЦИИ	145
22.3.1.	Измерение системного напряжения	145
22.3.2.	Измерение сетевого напряжения	146
22.3.3.	Измерение частоты сетевого напряжения	146
22.3.4. 22.3.5.	Измерение тока	146
	Расчет и отображение выходной мощности выпрямителей	146
22.3.6. 22.3.7.	Измерение тока определенных выпрямителей	146
22.3.7.	Измерение напряжения аккумуляторов	147
22.3.0.	Измерение напряжения на блоках измерения постоянного напряжениям ARL	147 147
	Измерение температуры	148
	Измерение влажности окружающей среды	148
	Измерение емкости аккумуляторных батарей	
22.4.	Функции управления	150
22.4.1.	Управление вентиляторным блоком	150
22.4.2.	Управление реле	151
22.4.3.	Управление светодиодами и звуковым аварийным сигналом	152
22.4.4.	Управление дисплеем и кнопками	153
22.4.5.	Управление интерфейсом RS232	153
22.4.6.	Управление интерфейсами RS485	153
22.4.7.	Управление интерфейсом Ethernet 10/100T	153
22.5.	Функции аварийной сигнализации	153
22.5.1.	Аварийные сигналы и заводские настройки степени срочности	154
22.5.2.	Передача аварийных сигналов на узел управления версии 5 (SNMP V5)	156
22.5.3.	ALM 01 - BOOST CHARGING – Ускоренный заряд аккумуляторной батареи	157
22.5.4.	ALM 02 - HIGH BATTERY VOLTAGE - Высокое напряжение батареи	158
22.5.5.	ALM 03 - LOW BATTERY VOLTAGE - Низкое напряжение батареи	158
22.5.6.	ALM 04 – CRITICALLY LOW BATTERY VOLTAGE – Критически низкое напряжение	
	батареи	158
22.5.7.	ALM 05 - MAINS FAILURE – Неисправность электросети	158
22.5.8.	ALM 06 - FUSE/CB FAILURE – Неисправность предохранителя/автоматического	
	выключателя	159
22.5.9.	the contract of the contract o	159
	ALM 08 – AUDIO ALARM DISABLED – Отключение звукового аварийного сигнала	160
	ALM 09 - FIRE – Пожар	160
22.5.12.	ALM 10 – TRANSMISSION EQUIPMENT FAILURE – Неисправность оборудования	
	передачи	160
22.5.13.	ALM 11 – CRITICALLY HIGH TEMP OF ENVIRONMENT- Критически высокая	
	температура окружения станции или аккумуляторной батареи	160
22.5.14.	ALM 12 – CRITICALLY LOW TEMP OF ENVIRONMENT- Критически низкая	
	температура окружения станции или аккумуляторной батареи	161
22.5.15.	ALM 13, 14, 15, 16 – Проникновение в помещение с телекоммуникационным	
	оборудованием	161
22.5.16.	ALM 17 – BATTERY CAPACITY MEASUREMENT – Измерение емкости	
	аккумуляторной батареи	161
22.5.17.	ALM 19 - FLAT RTC BATTERY – Разряженная батарея на RTC (часы реального	
	времени) системы электропитания	161
22.5.18.	ALM 20 – CRITICALLY HIGH TEMP OF RECTIFIERS - Критически высокая	
	температура выпрямителей	162

ISKRATEL

	ALM 21 – SYMMETRY FAILURE – Критическая асимметрия аккумуляторов батареи ALM 22 - INCONSISTENT EQUIPMENT - Несоответствие оборудования системы	162
22.5.20.	электропитания	162
22 5 21	ALM 23 - FAILURE OF RELAY – Неисправность реле LVD	163
	ALM 24 - FAILURE OF BATTERY OR LOAD RELAY 2 – Неисправность батарейного	100
	реле или реле нагрузки LVD2	163
22.5.23.	ALM 25 - MAINTENANCE CHARGING – Индивидуальный подзаряд аккумуляторной	.00
	батареи	163
22.5.24.	ALM 26 - MAINTENANCE CHARGING – Индивидуальный подзаряд аккумуляторной	
	батареи 2	164
22.5.25.	ALM 27 - GENERATOR FAILURE - Неисправность генератора	164
22.5.26.	ALM 28 - FREQUENCY FAILURE — Ошибка сетевой частоты	164
22.5.27.	ALM 29 – FAILURE OF AIR-CONDITIONER 1 – Неисправность кондиционера 1	165
	ALM 30 – FAILURE OF AIR-CONDITIONER 2 – Неисправность кондиционера 2	165
22.5.29.	ALM 31 - ALM 34 – USER-DEFINED ALARM – Аварийные сигналы, определяемые	
	пользователем	165
	ALM35 - GENERATOR RUNNING – Генератор работает	166
	ALM 23 - FAILURE OF RELAY — Неисправность реле LVD3	166
22.5.32.	ALM 37 - MAINTENANCE CHARGING OF BATTERY 3 – Индивидуальный подзаряд	400
00 5 00	аккумуляторной батареи 3	166
	ALM 38 - Communication failure - Потеря коммуникации	166
22.5.34.	ALM39 - POWER-SUPPLY SHUT-OFF WARNING – Уведомление о выключении	107
22 5 25	CUCTEMЫ	167
22.5.55.	ALM 40 - ALM 64 – USER-DEFINED ALARM – Аварийные сигналы, определяемые пользователем	167
22 5 36	Передача аварийных сигналов на выходы реле	167
	Передача аварийных сигналов на узел управления	168
22.6.	Функции контроля	168
22.6.1. 22.6.2.	Ежемесячная статистика измеренных значений	168 168
22.6.3.	Ежедневная статистика измеренных значений Статистика зарядки и разрядки аккумуляторных батарей	168
22.6.4.	Хронология событий системы электропитания и окружения	169
22.7.	Системные функции	169
22.7.1.	Загрузка новой версии программного обеспечения	169
22.7.2. 22.7.3.	Управление системой MPS при помощи дисплея и кнопок Управление системой через веб-браузер	169 169
		109
23.	УПРАВЛЕНИЕ СИСТЕМОЙ MPS ПОСРЕДСТВОМ ДИСПЛЕЯ КОНТРОЛЬНОГО	
	БЛОКА	170
23.1.	Основное отображение на дисплее	170
23.2.	Меню MEASURED VALUES - вывод измеренных значений	171
23.3.	Меню ACTIVE ALARMS – вывод на дисплей аварийных сигналов	173
	·	
23.4.	Меню SETTINGS – настройка системы	173
23.4.1.	Меню PARAMETER	175
23.4.2. 23.4.3.	Меню «FUNCTION»	177
23.4.4.	Меню ALARM Меню SYSTEM	177 178
	Меню "TESTS"	
23.5.	MEHO 1ES1S	183
23.6.	Включение и выключение контрольного блока	184
24.	КОНТРОЛЬ СИСТЕМЫ MPS С ПОМОЩЬЮ ТЕРМИНАЛА УПРАВЛЕНИЯ ИЛИ	
	УЗЛА УПРАВЛЕНИЯ	185
24 1	Резистрация пользователя в системе	185

24.2.	Добавление нового пользователя	187
24.3.	Изменение пароля пользователя	189
24.4.	Общие инструкции по управлению	189
24.4.1.	Поле менеджера	190
24.4.2.	Рабочая область	190
24.4.3.	Область сообщений	193
24.4.4.	Панель инструментов	193
24.4.5.	Строка меню	195
24.4.6.	Обрыв связи	199
24.5.	Контроль системы электропитания	199
24.5.1.	Element Monitor - отображение основных данных системы	199
24.5.2.	Элемент Analog Inputs – отображение измеренных аналоговых значений	201
24.5.3.	Элемент Active Alarms - отображение активных аварийных сигналов системы	202
24.6.	Настройки и конфигурация	203
24.6.1.	Элемент System Voltage – системное напряжение	205
24.6.2.	Элемент LVD Relay – управление реле LVD	207
24.6.3.	Элемент Battery – параметры батареи	209
24.6.4.	Элемент Fan Unit – управление вентиляторным блоком	212
24.6.5.	Элемент Air-conditon - управление вентиляторами теплообменника и	
	нагревателями.	213
24.6.6.	Элемент Control of Device – управление внешними устройствами	214
24.6.7.	Элемент Audio - управление звуковым аварийным сигналом	216
24.6.8.	Элемент Alarm Panel – управление панелью аварийной сигнализации	217
24.6.9.	Элемент Alarms – аварийные сигналы	219
	Элемент Relay – управление реле	224
24.6.11.	Элемент System Settings – системные параметры	226
24.7.	Компоненты системы электропитания	231
24.7.1.	Элемент Power Modules – блоки питания	231
24.7.2.	Элемент ARH Control Unit – контрольный блок	236
24.7.3.	Элемент ARG Main DC Distribution Supervison Units - контрольные блоки	
	распределения постоянного тока	237
24.7.4.	Элемент ARI Battery Measuring Units – блоки измерения напряжения аккумуляторов	
	батареи	242
24.7.5.	Элемент ARJ Relay Units – блоки управление реле	245
24.7.6.	Элемент ARK Alarm Units – блоки сбора аварийных сигналов	247
	Элемент ARL DC Measuring Units – блоки измерения напряжения постоянного тока	249
24.7.8.	Элемент ARM CB's or Fuses Supervison Units – блоки контроля автоматических	054
	выключателей или предохранителей	251
24.8.	Хронология событий	254
24.8.1.	Элемент System Events – хронология системы электропитания	254
24.8.2.	Элемент Environment Events – хронология событий окружения системы	256
24.0	электропитания	256
24.9.	Статистика	258
24.9.1.	Элемент Daily Statistics – ежедневная статистика	258
24.9.2.	Элемент Detail Statistics – подробная статистика	260
24.9.3.	Элемент Battery Statistics - статистика заряда и разряда батарей	262
24.10.	Измерение емкости батареи	266
25	СПИСОК СОКВАЩЕНИЙ	270

Документ содержит 271 страниц.

1. Инструкции по безопасности

Система электропитания MPS должна устанавливаться в закрытой зоне. Доступ к ней разрешен лишь уполномоченному персоналу. Система монтируется на бетонный пол или какую-либо другую негорючую поверхность. Монтаж и техническое обслуживание системы должен проводиться лишь квалифицированным уполномоченным персоналом.

В распределительном щите переменного тока, к которому подключается система MPS, должен быть установлен выключатель, обеспечивающий одновременное выключение всех фазных проводников.

Минимальное расстояние между контактами выключателя – 3 мм.

Также допускается подключать систему MPS к распределительной системе сетевого переменного тока IT. В этом случае в распределительном щите переменного тока, к которому подключается система MPS, должен быть установлен выключатель, обеспечивающий одновременное выключение всех фазных проводников и нулевого (нейтрального) проводника.

При подключении к сетевому питанию обязательно необходимо сначала подключить к системе MPS заземляющий проводник PE и только затем остальные проводники. При отключении сначала отсоединяются все фазные и нейтральный проводники, а затем (последним) — заземлающий проводник PE. Система MPS должна быть всегда заземлена. Отводимый ток (ток прикосновения) системы MPS - более 3,5 мА.

В системе MPS допускается перегоревший предохранитель заменить лишь предохранителем точно такого же типа и с такими же номинальными характеристиками, благодаря чему исключается возможность возгорания. К замене предохранителей допускается лишь квалифицированный уполномоченный персонал.

Аккумуляторная батарея, установленная в контрольном блоке системы MPS, может быть заменена лишь батареей такого же типа во избежание ее взрыва. К замене допускается лишь квалифицированный уполномоченный персонал, отвечающий также за соответствующее уничтожение отработанной батареи.

2. Системные функции

2.1. Бесперебойное электропитание телекоммуникационного оборудования

Система электропитания предназначена для обеспечения бесперебойного питания телекоммуникационных систем и остального оборудования постоянным током с напряжением 48 В и 60 В. Система обеспечивает выпрямление сетевого напряжения, а также адаптацию уровня напряжения постоянного тока к уровню напряжения аккумуляторных батарей 48 В и 60 В, которые постоянно подключены к системе электропитания. При пропадании сетевого напряжения питание подключенного оборудования обеспечивается аккумуляторными батареями.

2.2. Бесперебойное электропитание телекоммуникационного оборудования переменным током 230 В

Оборудование, питание которого обеспечивается напряжением 230 В переменного тока, подключено через интегрированный в систему инвертор. Выходная мощность инвертора составляет 250 ВА. Если энергопотребление оборудования является большим, в систему электропитания устанавливается более мощный инвертор или инверторная система.

2.3. Регулировка системного напряжения

Система обеспечивает регулировку выходного напряжения в зависимости от типа подключенных аккумуляторных батарей; например, 54,5 В для системы 48 В и 68,1 В для системы 60 В. В зависимости от температуры батарей система повышает/понижает установленное выходное напряжение системы и таким способом служит для оптимального заряда аккумуляторных батарей.

2.4. Ограничение зарядного тока батареи

Система позволяет ограничение тока, от которого заряжается батарея. Ограничение тока происходит путем снижения выходного напряжения выпрямителей.

2.5. Ускоренный заряд батареи

Система проводит ускоренный заряд батареи в случае быстрого заряда разряженной батареи и в случае периодического заряда батареи повышенным напряжением. Система повышает выходное напряжение выпрямителей до 56,5 В для системы 48 В и до 70,5 В для системы 60 В.

2.6. Отключение батареи при низком напряжении

Аккумуляторные батареи защищены от глубокого разряда с помощью реле LVD, которые управляются контрольным блоком системы или аналоговой схемой.

Система обеспечивает отключение аккумуляторной батареи с помощью реле LVD в случае понижения напряжения ниже критического предельного значения 42 В ± 0.5 В (52,5 В ± 0.5 В – в системе 60 В). Аккумуляторные батареи снова включаются посредством реле LVD после повышения напряжения до 50 В ± 1 В или выше (62,5 В ± 1 В – в системе 60 В). Батареи защищены также в случае отказа или неисправности конрольного блока.

2.7. Выборочное выключение нагрузки при низком напряжении

Нагрузки низкого приоритета при низком напряжении системы отключаются, и тем самым продлевается работа системы в случае пропадания сетевого напряжения или большой неисправности выпрямителей.

2.8. Управление, контроль и обслуживание системы

Управление, контроль и обслуживание осуществляется через:

- дисплей и кнопки на контрольном блоке;
- локальный ПК, подключенный через гнездо Ethernet на лицевой панели контрольного блока.
- узел управления MN, имеющий доступ к системе MPS через:
 - порт RS232 станции SI2000/SI3000 (PPP);
 - интерфейс Ethernet.

3. Описание системы электропитания

Система электропитания предназначена для бесперебойного питания телекоммуникационных систем напряжением 48 В и 60 В и выходным током в пределах от 16,2 А до 264 А, что зависит от числа и типа встроенных выпрямителей. Система электропитания имеет выделенное заземление. Это значит, что заземление металлических частей шкафа реализовано при помощи питающего проводника +UB (MR).

Конструкция системы электропитания изготавливается в двух вариантах: первый вариант предусматрен для установки системы в статив типа ETS, а второй в 19-дюймовый статив. В первом варианте она соответствует стандарту ETS300119 для установки в статив габаритными размерами 600 х 300 мм (ширина, глубина). Высота системы составляет 250 мм. Во втором варианте конструкция позволяет установку в 19-дюймовый статив. Высота системы – 6U (267 мм). Систему электропитания можно установить также в другие типы шкафов с помощью специальных маханических адаптеров.

Система MPS состоит из основных и дополнительных компонентов, с помощью которых можно увеличить мощность системы электропитания.

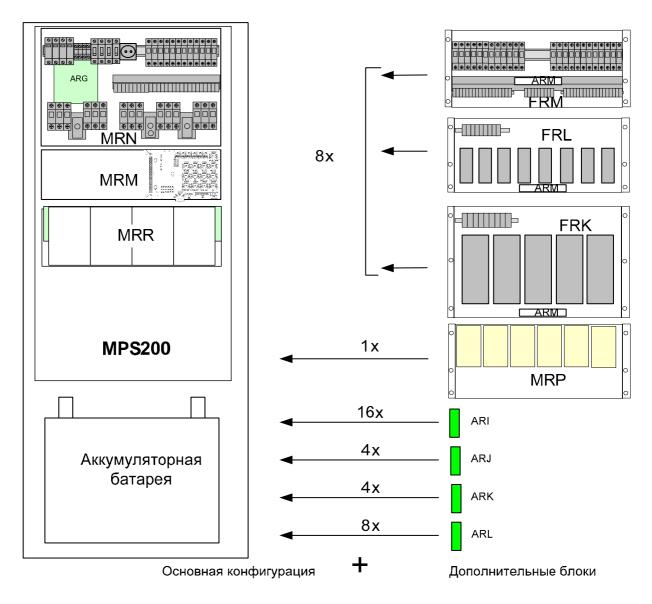
Основные компоненты системы:

- секция распределения постоянного и переменного тока (MRN), которая обеспечивает подключение батарей и нагрузок (встроен блок контроля распределения постоянного тока (ARG);
- секция контроля MRM, которая обеспечивает подключение контрольного блока и поле подключения сигнальных проводов и обеспечивает подключение трех конверторов и/или инверторов, или блок распределения переменного тока.
- контрольный блок ARH;
- выпрямители (AC/DC):
 - 1300 Вт, преобразующий напряжение 230 В перем. тока в напряжение 48 В пост. тока для установки в статив ETS **до 11 выпрямителей** или
 - 1100 Вт, преобразующий напряжение 230 В перем. тока в напряжение 60 В пост. тока для установки в статив ETS до 13 выпрямителей или
 - 1800 Вт, преобразующий напряжение 230 В перем. тока в напряжение 48 В пост. тока для установки в 19-дюймовый статив **до 8 выпрямителей** или
 - 3200 Вт, преобразующий напряжение 230 В перем. тока в напряжение 48 В пост. тока для установки в 19-дюймовый статив **до 4 выпрямителей** или
- до трех вольтодобавочных конверторов или инверторов;
- до двух секций выпрямителей (MRD) с задней панелью или одна секция выпрямителей (MRR) или MRQ с задней панелью;
- аккумуляторные батареи.

Дополнительные компоненты:

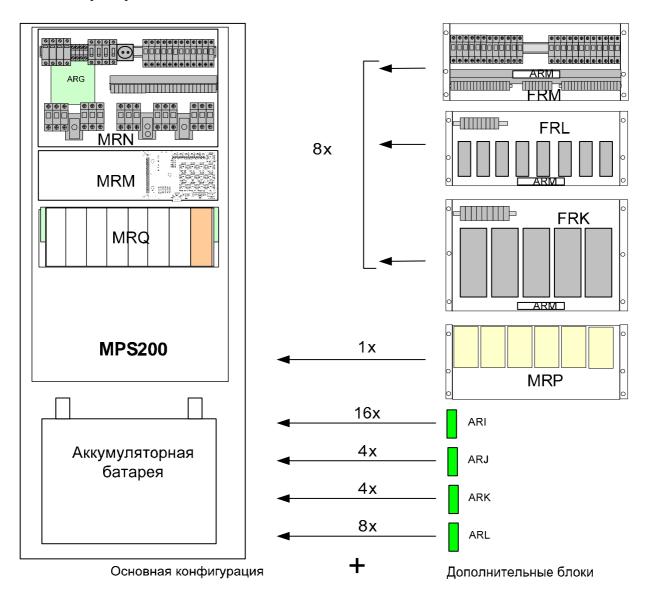
• до восьми:

- вторичных распределительных блоков с автоматическими выключателями (FRM), устанавливаемых в шкафу рядом с потребителями и обеспечивающих разводку питания до потребителей через не более 24 автоматических выключателя и с электронным обнаружением их выключения (встроен блок контроля автоматических выключателей (ARMBA)):
- вторичных распределительных блоков с пробковыми предохранителями (FRL), устанавливаемых в шкафу рядом с потребителями и обеспечивающих разводку питания до потребителей через 9 пробковых предохранителей с макс. номинальным значением 160 А (встроен блок контроля автоматических выключателей (ARMBB));

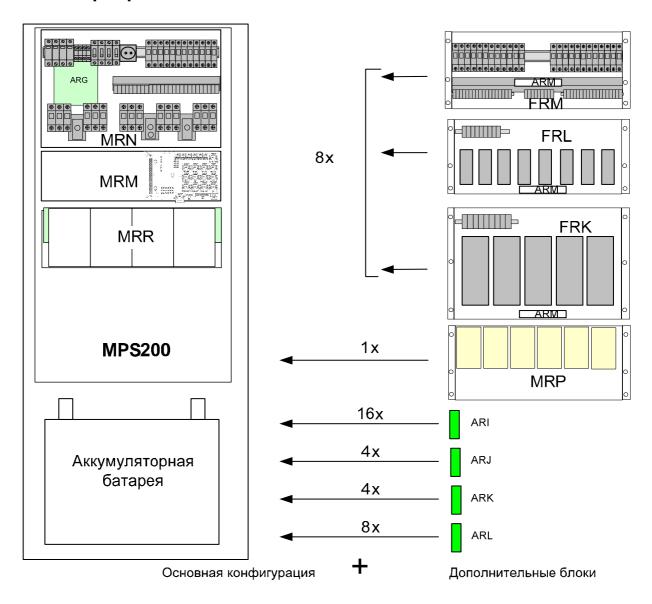

- вторичных распределительных блоков с пробковыми предохранителями (FRK), устанавливаемых в шкафу рядом с потребителями и обеспечивающих разводку питания до потребителей через 5 пробковых предохранитель с макс. номинальным значением 400 A с электронным обнаружением их перегорания (встроен блок контроля автоматических выключателей (ARMBB));
- секция дополнительных преобразователей (MRP), к которой можно подключить не более 6 дополнительных вольтодобавочных конверторов или инверторов;
- вентиляторный блок;
- до 16 блоков измерения напряжения аккумуляторов (ARI);
- до 8 блоков измерения напряжения постоянного тока (ARLAA или ARLAB);
- до 4 блоков сбора аварийных сигналов (ARK);
- до 4 блоков управления реле (ARJ).

Внимание!

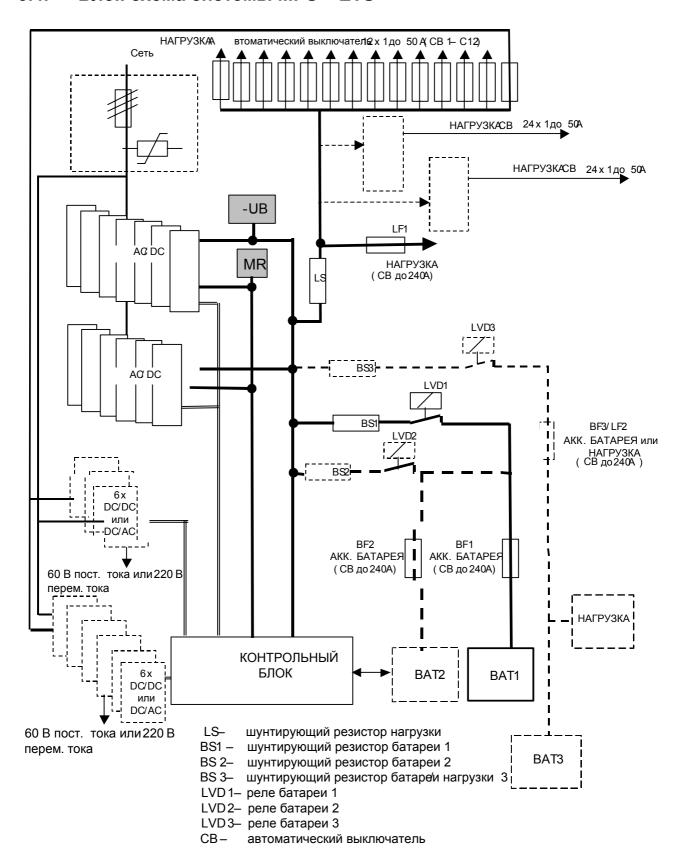
В системе электропитания можно установить макс. 32 блока ARG, ARM, ARI, ARL, ARK или ARJ. Для 16 блоков обеспечивается питание непосредственно от контрольного блока ARH системы электропитания. Если в системе электропитания имеется более 16 блоков ARM, ARI, ARL, ARK или ARJ, необходимо обеспечить дополнительное питание с помощью вольтодобавочного конвертора (48 B/ 14 B – ARFAG). Дополнительное питание необходимо обеспечить также в случае, если расстояние между блоками и системой электропитания составляет более 40 м, в результате чего появляется большое снижение питающего напряжения на кабелях.



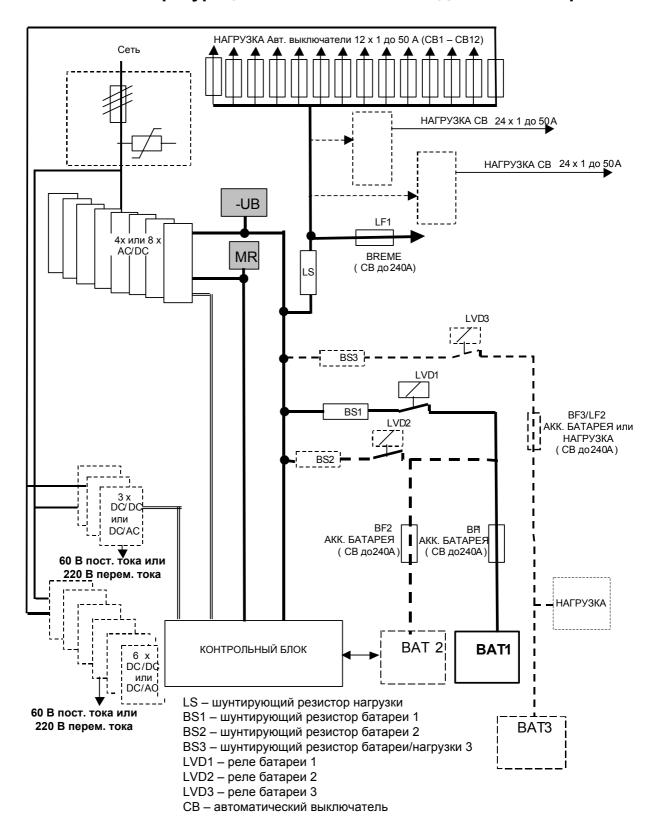
3.1. Компоненты системы MPS – вариант ETS



3.2. Компоненты системы MPS – 19-дюймовый вариант с пробразователями 1800 Вт



3.3. Компоненты системы MPS – 19-дюймовый вариант с пробразователями 3200 Вт



3.4. Блок-схема системы MPS - ETS

3.5. Схема конфигурации системы MPS – 19-дюймовый вариант

3.6. **Технические характеристики системы MPS**

3.6.1. Вариант ETS

Вход

Номинальное напряжение 1 х 230 В или 3 х 230 В перем. тока

1 x 230 В или 3 x 230 В перем. тока $\pm 15~\%$ Допустимое напряжение

> При напряжении приблизительно 280 В перем. выпрямители выключаются и автоматически включаются при падении напряжения до приблизительно. 270 В перем. тока. При напряжении в пределах от 150В до 187 В перем. тока выпрямители работают со сниженной мощностью.

Частотный диапазон от 44 до 66 Гц

Максимальный входной ток ≤3 х 32 А (среднеквадратичное значение) для сетевого

напряжения 3 х 230 В перем. тока

Ток включения макс. З х 150 А (среднеквадр. значение) (3 х 230 В перем.

> тока), время включения составляет макс. 500 мкс при включении в холодном состоянии при десяти выпрямителях, не включен ток потребителей на инверторах (например,

компьютер, монитор)

> 0,98 при макс. нагрузке и номинальном входном напряжении Коэффициент мощности

согласно CISPR A, EN 55022 A Излучение радипомех

Выход системы 48 В с выпрямителями 1300 Вт

14300 BT Максимальная выходная

мощность

Номинальное выходное

54.0 B

напряжение

Диапазон регулировки 50,0 B -56,0 B

выходного напряжения

Статическая стабильность 1 % при максимальном изменении нагрузки, температуры и

входного напряжения напряжения

262,9 А (от 23,9 А до 262,9 А в зависимости от количества Выходной ток

выпрямителей) при рабочем входном напряжении от 54,5 В до

253 В перем. тока

299,2 A \pm 7 A (от 27,2 A до 299,2 A в зависимости от количества Максимальный выходной

выпрямителей) при выходном напряжении 45 В TOK

Деление тока < 5 % от максимального тока при параллельно работающих

выпрямителях

Пульсация < 100 мВ от пика к пику, ширина полосы 30 МГц

Псофометрическое < 2 мВ (при нагрузке от 0 до 100 % и при заряде батареи)

напряжение

> 91,5 % при макс. нагрузке и номинальном входном КПД

напряжении

Внимание!

Система электропитания 48 В предназначена для подключения максимальной нагрузки 200 А, ток. обеспечиваемый преобразователями, предназначен остальной аккумуляторных батарей!

Выход системы 60 В с выпрямителями 1100 Вт

Максимальная выходная 14300 Вт

мощность

Номинальное выходное 68,1 В

напряжение

Диапазон регулировки 63 В -70,5 В

выходного напряжения

Статическая стабильность 1 % при максимальном изменении нагрузки,

напряжения температуры и входного напряжения

Выходной ток 210,6 А (от 16,2 А до 210,6 А в зависимости от

количества выпрямителей) при рабочем входном

напряжении от 68,1 В до 253 В перем. тока

Максимальный выходной 247 A ±5 A (от 19 A до 247 A) в зависимости от

ток количества выпрямителей)

Деление тока < 5 % от максимального тока при параллельно

работающих выпрямителях

Пульсация < 100 мВ от пика к пику, ширина полосы 30 МГц Псофометрическое < 2 мВ (при нагрузке от 0 до 100 % и при заряде

напряжение батареи)

КПД > 90 % при макс. нагрузке и номинальном входном

напряжении

Внимание!

Система электропитания 60 В предназначена для подключения максимальной нагрузки 200 А, остальной ток, обеспечиваемый преобразователями, предназначен для заряда аккумуляторных батарей!

Прочие данные

Безопасность согласно IEC 950 класс 1

Защита автоматическое ограничение выходного тока

выпрямителя, на входе каждого выпрямителя находится плавкий предохранитель, выборочное выключение отдельного выпрямителя в случае появления

неисправности,

выключение выпрямителя при высоком напряжении, выключение аккумуляторной батареи при низком

напряжении

Изоляция усиленная изоляция, испытанная при:

4,25 кВ пост. тока, первичные цепи – вторичные цепи

2,12 кВ пост. тока, первичные цепи – корпус

0,5 кВ пост. тока, вторичные цепи – корпус системы 48 В 1 кВ пост. тока, вторичные цепи – корпус системы 60 В

Защита мех. конструкции IP20 Низкочастотный шум < 35 дБА

 Температура окружения
 от 0° C до +50° C

 Температура хранения
 от -40° C до +70° C

 Относительная влажность
 от 20 % до 90 %

 Охлаждение
 естественное

 Вибрация
 согласно IEC 68-2-6

Транспортировка согласно ІЕС 68-2-27 и 68-2-29

Габаритные размеры 600 мм х 2000 мм х 300 мм (ширина х высота х глубина),

стандартный шкаф ETS

Вес до 520 Н без шкафа и батарей

3.6.2. 19-дюймовый вариант

Вход

Номинальное напряжение 1 X 230 В пер. тока или 3 x 230 В пер. тока или 3 x 127 В

пер. тока (выпрямители подключены к межфазному

напряжению 220 В перем. тока)

Допустимое напряжение 3 х 230 В перем. тока $\pm 15 \%$

При напряжении менее 190 В перем. тока выходная мощность уменьшается. При напряжении более 275/310 В перем. тока выпрямители выключаются и автоматически повторно включаются при падении

напряжения (260 - 310 В перем. тока).

Частотный диапазон от 44 до 66 Гц

Максимальный входной ток ≤3 х 32 А (среднеквадратичное значение) для сетевого

напряжения 3 х 230 В перем. тока или \leq 3 х 58 А (среднеквадратичное значение) для сетевого

напряжения 3 х 127 В перем. тока

Коэффициент мощности > 0,98 при макс. нагрузке и номинальном входном

напряжении

Излучение радипомех согласно CISPR A, EN 55022 A

Выход системы 48 В с выпрямителями 1800 Вт

Максимальная выходная 14400 Вт

мощность

Номинальное выходное 54,0 В

напряжение

Диапазон регулировки от 50,0 В до 56,0 В

выходного напряжения

Статическая стабильность 1 % при максимальном изменении нагрузки, температуры

напряжения входного напряжения

Выходной ток 264 А (от 33 А до 264 А в зависимости от количества

выпрямителей) при выходном напряжении 54,5 В

Максимальный выходной 304 A ±8 A (от 38 A до 304 A в зависимости от количества

гок выпрямителей) при выходном напряжении 45 В

Деление нагрузки < 5 % от максимального тока при параллельно работающих

выпрямителях

Пульсация < 100 мВ от пика к пику, ширина полосы 30 МГц

Псофометрическое < 2 мВ (при нагрузке от 0 до 100 % и при заряде батареи)

напряжение

КПД > 93 % при 60 — 100 % нагрузке и номинальном входном

напряжении

Выход системы 48 В с выпрямителями 3200 Вт

Максимальная выходная 12800 Вт

мощность

Номинальное выходное 54,5 В

напряжение

Диапазон регулировки 50,5 B - 56,5 B

выходного напряжения

Статическая стабильность 1 % при максимальном изменении нагрузки, температуры

напряжения и входного напряжения

Выходной ток 235 А (от 58,8 А до 235 А в зависимости от количества

выпрямителей) при выходном напряжении 54,5 В

Максимальный выходной ток $256 \text{ A} \pm 8 \text{ A}$ (от 64 A до 256 A в зависимости от количества

выпрямителей) при выходном напряжении 45 В

Деление нагрузки < 5 % от максимального тока при параллельно работающих

выпрямителях

Пульсация < 100 мВ от пика к пику, ширина полосы 30 МГц

Псофометрическое < 2 мВ (при нагрузке от 0 до 100 % и при заряде батареи)

напряжение

КПД > 93 % при 60 - 100 % нагрузке и номинальном входном

напряжении

Внимание!

Система электропитания 48 В предназначена для подключения максимальной нагрузки 200 А, остальной ток, обеспечиваемый преобразователями, предназначен для заряда аккумуляторных батарей!

Прочие данные

Безопасность согласно IEC 950 класс 1

Защита автоматическое ограничение выходного тока выпрямителя, на

входе каждого выпрямителя находится плавкий предохранитель, выборочное выключение отдельного выпрямителя в случае появления неисправности, выключение выпрямителя при высоком напряжении,

выключение аккумуляторной батареи при низком напряжении

Изоляция усиленная изоляция, испытанная при:

4,25 кВ пост. тока, первичные цепи – вторичные цепи

2,12 кВ пост. тока, первичные цепи – корпус

0,5 кВ пост. тока, вторичные цепи – корпус для системы 48 В

Защита мех. конструкции IP20

Температура окружения от 0° C до +50° C до высоты над уровнем моря – 2000 м

от 0° C до +45° C при высоте над уровнем моря – свыше 2000 м

Температура хранения от -40° C до +70° C Относительная влажность от 20 % до 80 %

Охлаждение внутреннее вентиляторное охлаждение выпрямителя

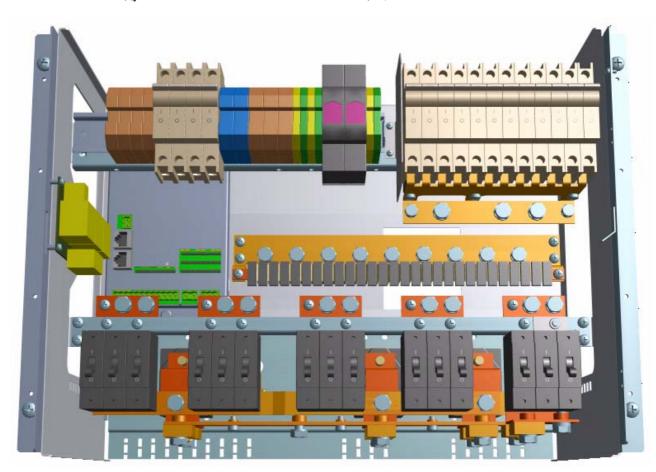
Вибрация согласно ІЕС 68-2-6

Транспортировка согласно ІЕС 68-2-27 и 68-2-29

Габаритные размеры 1000 мм х 400 мм (высота х длина), стандартный 19-дюймовый

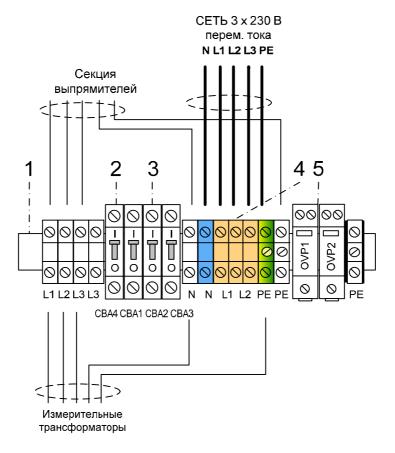
шкаф

Вес до 1200 Н (без батарей)

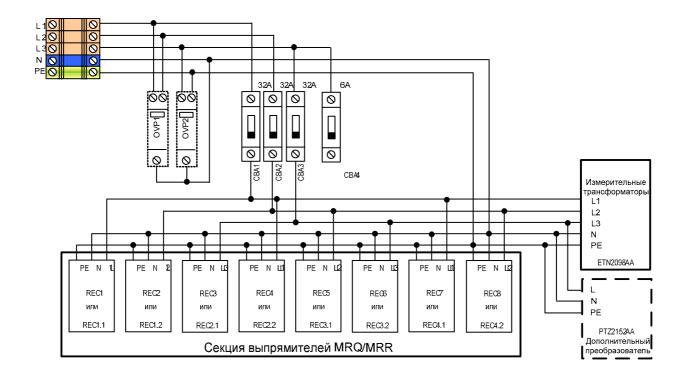

4. Блок распределения переменного тока

В системе электропитания используется несколько вариантов блока распределения переменного тока. В первом варианте блок распределения переменного тока является частью секции MRN, а во втором варианте блок распределения переменного тока является частью секции MRM.

4.1. Блок распределения переменного тока в секции MRN


Блок распределения переменного тока в секции MRN находится сверху слева. Секция MRN – это 19дюймовый блок высотой 8U и глубиной 280 мм. Блок распределения переменного тока реализован в секции и состоит из следующих элементов:

- опорного элемента для размещения соединительных клемм и элементов защиты;
- соединительные клеммы для подключения фазных проводников, нейтрального и заземляющего проводников и клеммы для разводки проводников в блоке распределения;
- автоматические выключатели для подключения выпрямителей и автоматические выключатели для подключения сервисной розетки опция;
- элементы защиты от перенапряжения типа 15 кА/40 кА (In/Imax) 320 В перем. тока (Uc) с заменяемым модулем без использования винтов опция;


Секция MRN

- 1 несущий элемент
- 2 автоматические выключатели для сервисной розетки 6 А опция
- 3 автоматические выключатели для выпрямителей 32 А
- 4 соединительные входные клеммы L1, L2, L3, N, PE (максимальное сечение соединительного кабеля 16 мм²) и клеммы для разводки входного напряжения
- 5 элемент защиты от перенапряжения опция

Блок-схема блока распределения переменного тока – подключение к 3 х 230 В перем. тока

OVP1 (OverVoltage Protection) – защита от перенапряжения, тип 1 (2 варистора)

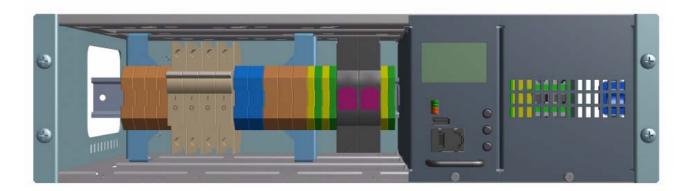
OVP2 (OverVoltage Protection) – защита от перенапряжения, тип 2 (варистор и газовый разрядник)

CBA Circuit Breaker Alternating (автоматический выключатель переменного тока)

REC преобразователь AC/DC (выпрямитель)

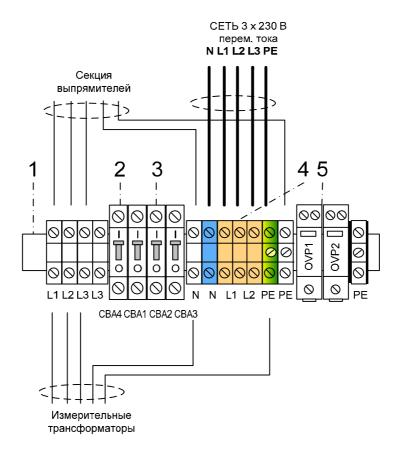
4.1.1. Назначение автоматических выключателей

- СВА1 для защиты выпрямителей в секции с выпрямителями MRQ или MRR, и для защиты измерительного трансформатора фазы L1 на плате ETN2098AA в секции MRN;
- СВА1 для защиты выпрямителей в секции с выпрямителями MRQ или MRR, и для защиты измерительного трансформатора фазы L2 на плате ETN2098AA в секции MRN;
- СВА1 для защиты выпрямителей в секции с выпрямителями MRQ или MRR, и для защиты измерительного трансформатора фазы L3 на плате ETN2098AA в секции MRN; для защиты инверторов в секции MRM;
- СВА4 для защиты дополнительного преобразователя 6 А.


4.2. Блок распределения переменного тока в секции MRM

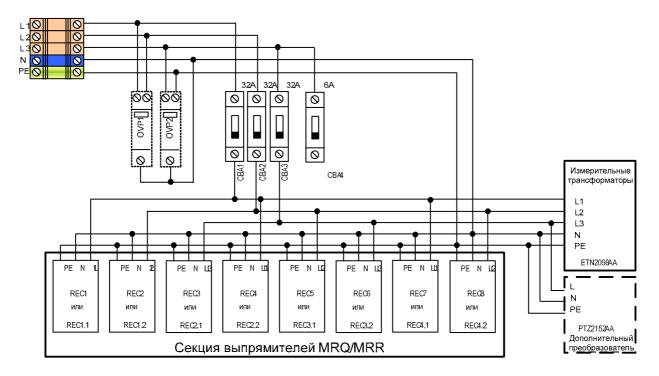
Блок распределения переменного тока в секции MRM находится слева и предназначен для разводки трехфазного переменного тока 230/400 В или трехфазного переменного тока 127/220 В. Секция MRM – это 19-дюймовый блок высотой 3U и глубиной 250 мм. Блок распределения переменного тока реализован в секции и состоит из следующих элементов:

- опорного элемента для размещения соединительных клемм и элементов защиты;
- соединительных клемм для подключения фазных проводников, нейтрального и заземляющего проводников;
- автоматических выключателей;

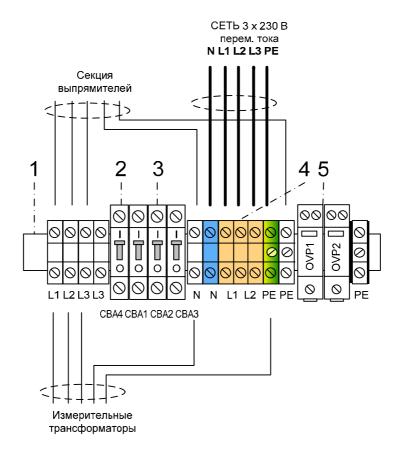


- элементов защиты от перенапряжения типа 15 кА с модулем электрической защиты, который можно заменить на новый без пользования винтами;
- сервисная розетка опция (только при подключении 230/400 В переменного тока).

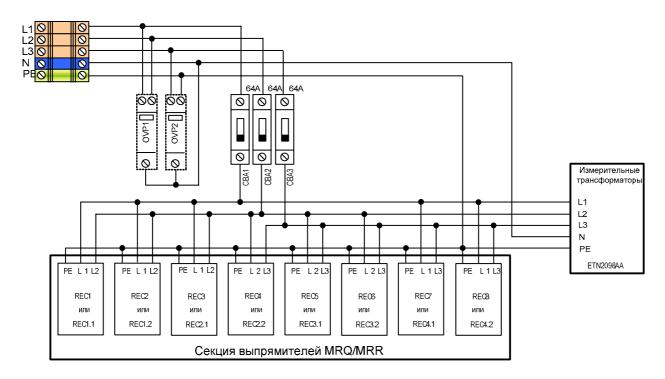
Секция MRM


4.2.1. Трехфазное питание напряжением 230/400 В переменного тока

- 1 несущий элемент
- 2 автоматические выключатели для сервисной розетки 6 А опция
- 3 автоматические выключатели для выпрямителей (32 А при переключении на 230/400 В перем. тока)


- 4 соединительные входные клеммы L1, L2, L3, N, PE (максимальное сечение соединительного кабеля 16 мм²) и клеммы для разводки входного напряжения
- 5 элемент защиты от перенапряжения опция

Блок-схема блока распределения переменного тока статива MRM, подключение к 3 x 230 В перем. тока

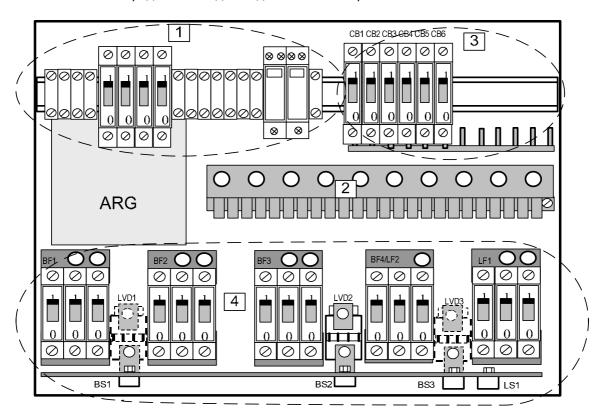


4.2.2. Трехфазное питание напряжением 127/220 В переменного тока

- 1 несущий элемент
- 2 автоматические выключатели для выпрямителей (32 А при переключении на 230/400 В перем. тока)
- 3 соединительные входные клеммы L1, L2, L3, N, PE (максимальное сечение соединительного кабеля 35 мм²) и клеммы для разводки входного напряжения
- 4 элемент защиты от перенапряжения опция

Блок-схема блока распределения переменного тока в стативе MRM, подключение к 3 х 127 В перем. тока

5. Основной блок распределения постоянного тока

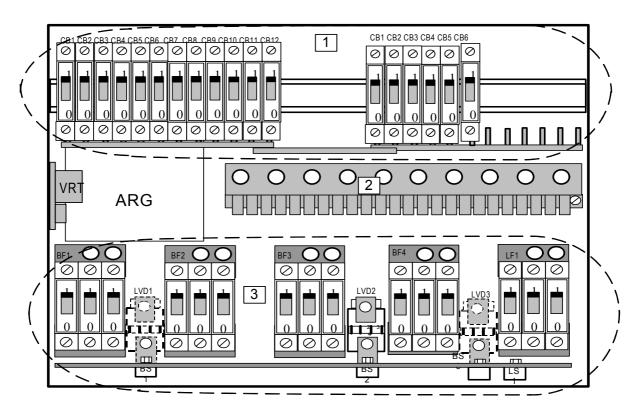

Блок распределения постоянного тока в секции MRN - это блок с габаритными размерами: высота – 8U и глубина - 280 мм, который на передней стороне закрыт дверями.

Нижняя часть блока распределения постоянного тока предназначена для подключения аккумуляторных батарей и нагрузок через автоматические выключатели на номинальный ток до 240 А. В этой части секции размещены также реле LVD, которые служат для отключения батарей и нагрузки, и шунтирующие резисторы для измерения тока батарей и нагрузки. Оборудованность реле LVD, шунтирующими резисторами и автоматическими выключателями отличается в зависимости от требований проекта. Определяется проектировщиком системы.

Верхняя часть блока предназначена для питания потребителей через автоматические выключатели от 1 A до 50 A и блоку распределения переменного тока. В данный состав входит также блок контроля распределения постоянного тока (ARG), который информацию о выключении автоматического выключателя, перегорании предохранителя, отказе реле LVD, токе нагрузок и батарей передает контрольному блоку ARH. На блоке ARG находится микроконтроллер, который осуществляет коммуникацию с процессором контрольного блока через RS485.

Реализованы два варианта MRN:

- MRNAA предназначен для подключения батарей 48 B,
- MRNBA предназначен для подключения батарей 60 В.


Секция MRN с блоком распределения постоянного тока

- 1 блок распределения переменного тока: защита от перенапряжения и сверхтоков, сервисная розетка
- 2 шина для разводки MR до потребителей, а также для подключения аккумуляторных батарей, нагрузок, секций с выпрямителями и контрольного блока ARH
- 3 вторичный блок распределения переменного тока автоматические выключатели СВ01 СВ12 на номинальный ток от 1 А до 50 А
- 4 основной блок распределения постоянного тока реле LVD, шунтирующие резисторы, автоматические выключатели до 240 А
- ARG блок контроля распределения постоянного тока
- VRT блок с измерительными трансформаторами

Примечание!

Оборудованность реле LVD, шунтирующими резисторами и автоматическими выключателями до 240 А зависит от способа подключения батарей и их количества, а также от необходимости выключения неприоритетной нагрузки. Более подробные данные смотри в главе Варианты оборудованности реле LVD, шунтирующими резисторами и автоматическими выключателями!

Секция MRN с блоком распределения постоянного тока

- 1 вторичный блок распределения постоянного тока автоматические выключатели CB01 CB24 на номинальный ток от 1 A до 50 A (возможно добавить еще 6 автоматических выключателей, однако их выключение невозможно контролировать)
- 2 шина для разводки MR до потребителей, а также для подключения аккумуляторных батарей, нагрузок, секций с выпрямителями и контрольного блока ARH
- 3 основной блок распределения постоянного тока реле LVD, шунтирующие резисторы, автоматические выключатели до 240 А
- ARG блок контроля распределения постоянного тока
- VRT блок с измерительными трансформаторами

Примечание!

Оборудованность реле LVD, шунтирующими резисторами и автоматическими выключателями до 240 А зависит от способа подключения батарей и их количества, а также от необходимости выключения неприоритетной нагрузки. Более подробные данные смотри в главе Варианты оборудованности реле LVD, шунтирующими резисторами и автоматическими выключателями!

5.1. Функции блока распределения постоянного тока в секции MRN

5.1.1. Защита аккумуляторных батарей

Батареи защищены до четырьмя автоматическими выключателями на номинальный ток до 240 A. Контрольный блок через блок ARG контролирует выключение автоматических выключателей.

Батареи подключаются к системе через одного или три реле LVD, которые служат для защиты батареи от повреждений из-за глубокого разряда (система 48 B): Ubat < 42 B; система 60 B: Ubat < 52,5 B) и от повышения температуры (Tbat <60° C). Реле LVD управляется блоком контроля распределения постоянного тока (ARG), который находится в секции MRN. При нормальной работе системы реле LVD управляется контрольным блоком ARH непосредственно через микроконтроллер в блоке ARG, в случае потери коммуникации с контрольным блоком ARH микроконтроллер переключает управление реле на аналоговую схему в блоке ARG.

5.1.2. Отключение потребителей нижнего приоритета

Секция MRN обеспечивает в случае разряда батареи отключение потребителей нижнего приоритета и тем самым уменьшает энергопотребление системы. Электропитание данных потребителей защищено автоматическим выключателем LF2. Потребители с более низким приоритетом подключаются через реле LVD (LVD3). При нормальной работе системы реле LVD управляется контрольным блоком ARH непосредственно через микроконтроллер в блоке ARG, в случае потери коммуникации с контрольным блоком микроконтроллер переключает управление реле на аналоговую схему в блоке ARG.

Внимание!

Выключение реле отключения нагрузки (LVD) возможно только в случае если контрольный блок включен. Если контрольный блок выключен или неисправен, реле отключения нагрузки (LVD) включено.

5.1.3. Защита потребителей

Потребители защищены макс. двумя автоматическими выключателями на номинальный ток до 240 А. Контрольный блок ARH через блок ARG контролирует выключение автоматических выключателей.

В секции можно установить до 24 автоматических выключателя на номинальный ток от 1 А до 50 А, которые служат для защиты потребителей. Контрольный блок ARH осуществляет контроль состояния автоматических выключателей через блок ARG. Процессор периодически сканирует состояние автоматических выключателей и по желанию заказчика в случае выключения автоматического выключателя генерирует аварийный сигнал.

В секции можно установить до 6 дополнительных автоматических выключателей на номинальный ток от 1 А до 50 А, которые служат для защиты потребителей. Выключение этих автоматических выключателей не контролируется.

Примечание!

В некоторых случаях на позицию, куда подключаются автоматические выключатели от 1 А до 50 А, можно установить также автоматические выключатели на номинальный ток до 100 А. Эти выключатели имеют двойную ширину и подключаются к двум позициям, предназначенным для подключения стандартных автоматических выключателей.

5.1.4. Выключение питания контрольного блока ARH

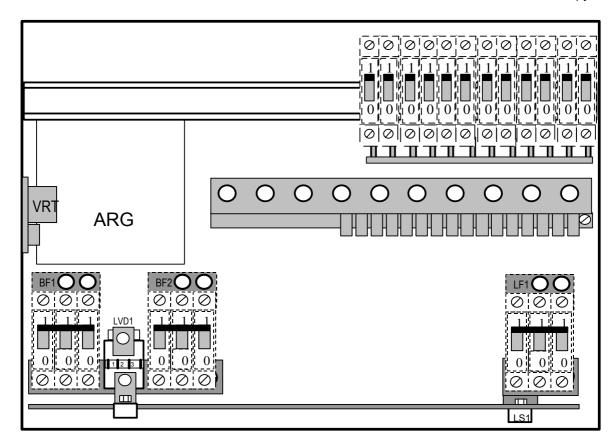
Переключатель S используется для выключения питания контрольного блока ARH, благодаря чему исключаются возможные повреждения контрольного блока при его замене.

Внимание!

После выключения блока необходимо подождать несколько секунд, чтобы контрольный блок действительно выключился. Контрольный блок можно извлечь из секции только после выключения светодиодов на контрольном блоке.

5.2. Варианты оборудованности реле LVD, шунтирующими резисторами и автоматическими выключателями

Посредством конфигурации основного блока распределения постоянного тока можно получить несколько вариантов оборудованности секции. Это зависит от системы резервного электропитания (система с одним, двумя или тремя реле LVD), числа встроенных батарейных реле и необходимости отключения неприоритетной нагрузки.

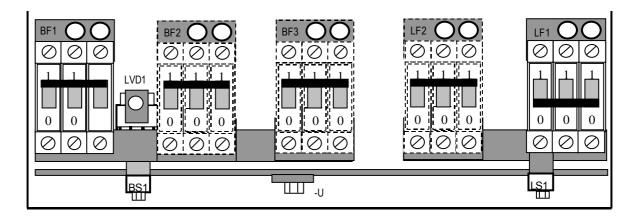


5.2.1. Основная секция MRN

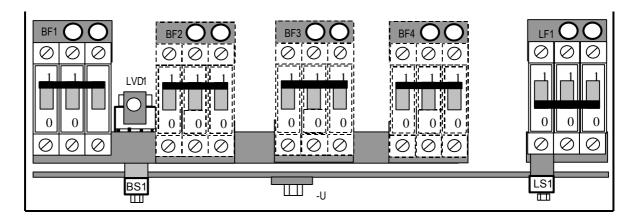
Секция MRN всегда содержит:

- шунтирующий резистор для измерения тока батареи (BS1);
- реле отключения батареи (LVD1);
- шунтирующий резистор для измерения тока нагрузки (LS1).

В основной секции можно проектировать до 12 автоматических выключателей на номинальный ток 1 - 50 A, до 2 автоматических выключателя на номинальный ток 240 A для защиты батарей через реле LVD1 и один автоматический выключатель на номинальный ток до 240 A для защиты нагрузок.

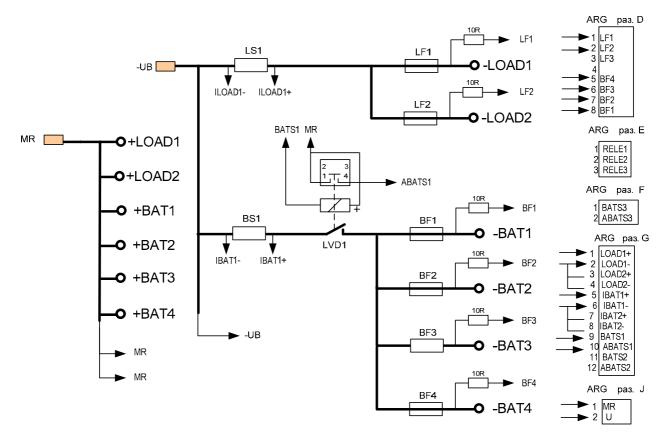

5.2.2. Дополнительные автоматические выключатели для подключения нагрузки до 50 A

Установкой первого дополнительного узла можно добавить еще 12 автоматических выключателей. Установкой второго дополнительного комплекта можно добавить еще 6 автоматических выключателей. Блок ARG может контролировать макс. 24 автоматических выключателя.



5.2.3. Система с одним реле для отключения аккумуляторной батареи (LVD)

В системе с одним реле LVD можно установить макс. четыре автоматических выключателя для защиты батарей или два автоматических выключателя для защиты нагрузки. Четвертый автоматический выключатель BF4 и второй автоматический выключатель LF2 для защиты нагрузки явлаются взаимоисключающими.



Комбинация 1

Комбинация 2

Внимание:

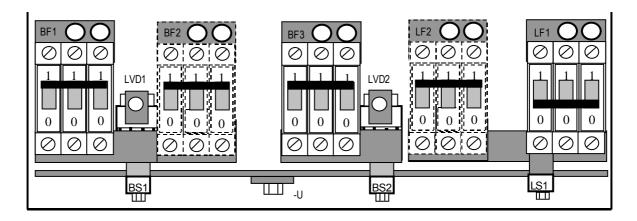
Автоматические выключатели LF2 и BF4 являются взаимоисключающими!

ВFх – автоматические выключатели для защиты аккумуляторной батареи х

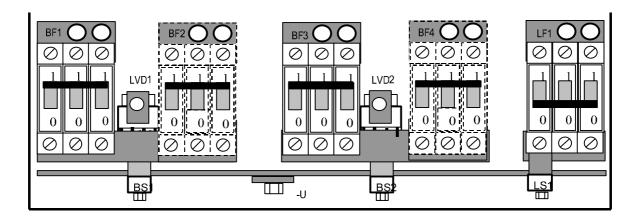
LFx – автоматические выключат ели для защиты нагрузки x

BSx – шунтирующий резистор для измерения тока батареи

LSx – шунтирующий резистор для измерения тока нагрузок

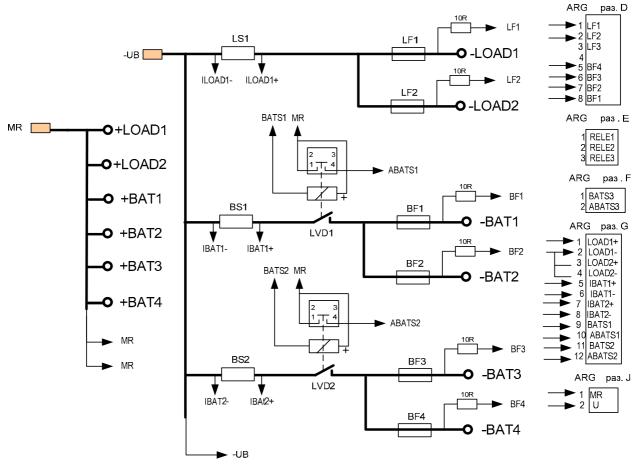

-U – подключение отрицательного полюса напряжения выпрямителей

LVDx – реле для отключения батареи или нагрузки при низком напряжении (low voltage disconnection relay)



5.2.4. Система электропитания с двумя реле LVD

В системе с двумя реле LVD можно установить макс. четыре автоматических выключателя для защиты батарей или два автоматических выключателя для защиты нагрузки. Четвертый автоматический выключатель BF4 и второй автоматический выключатель LF2 для защиты нагрузки являются взаимоисключающими.



Комбинация 1

Комбинация 2

Внимание:

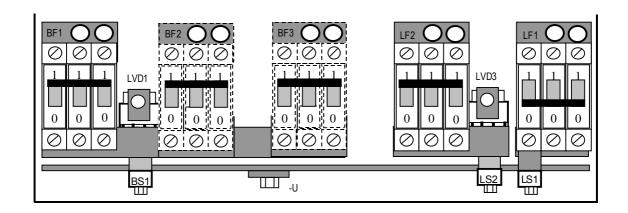
Автоматические выключатели LF2 и BF4 являются взаимоисключающими!

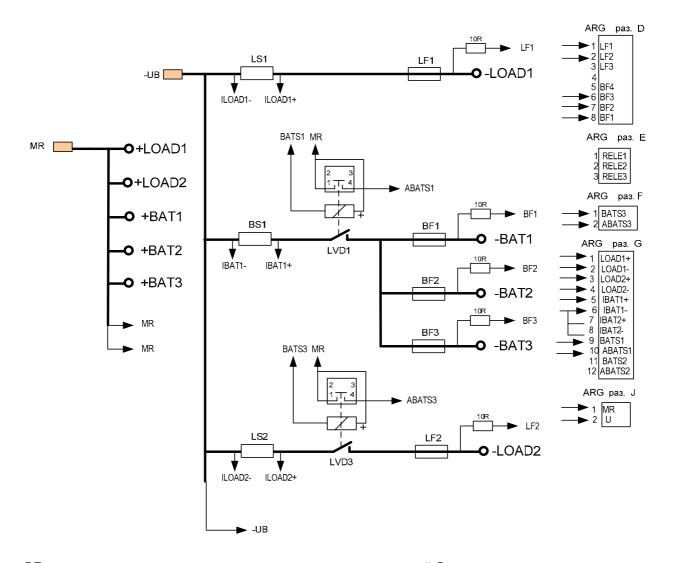
ВFх – автоматические выключатели для защиты аккумуляторной батареи х

LFx – автоматические выключатели для защиты нагрузки x

BSx – шунтирующий резистор для измерения тока батареи

LSx – шунтирующий резистор для измерения тока нагрузок


-U – подключение отрицательного полюса напряжения выпрямителей


LVDx – реле для отключения батареи или нагрузки при низком напряжении (low voltage disconnection relay)

5.2.5. Система электропитания с одним реле LVD с выборочным отключением нагрузки

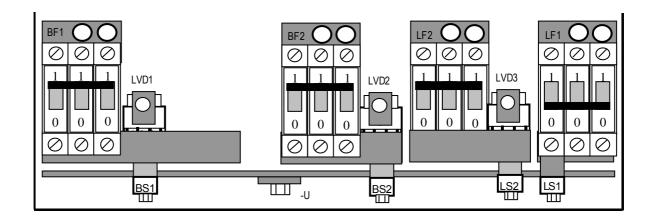
В системе с одним реле LVD с выборочным отключением нагрузки можно установить макс. три автоматических выключателя для защиты батарей или два автоматических выключателя для защиты нагрузки.

BFx – автоматические выключатели для защиты аккумуляторной батареи x

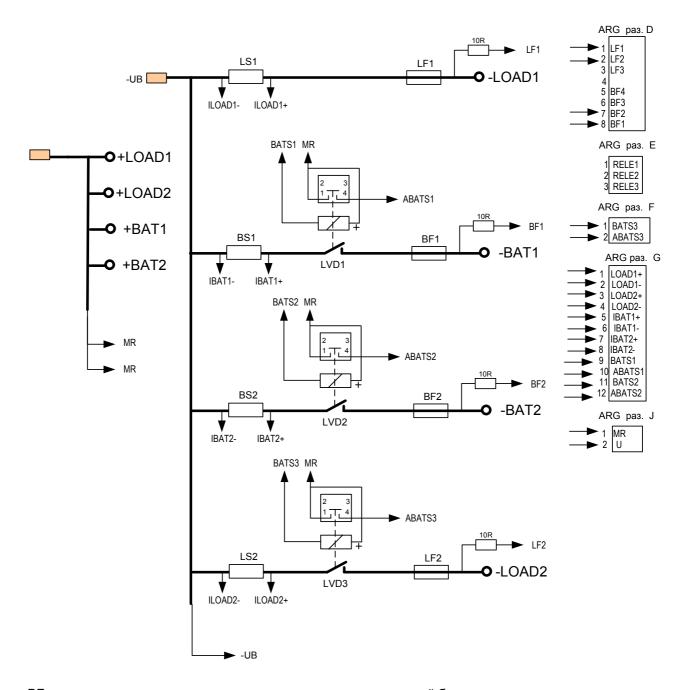
LFx – автоматические выключатели для защиты нагрузки x

BSx – шунтирующий резистор для измерения тока батареи

LSx – шунтирующий резистор для измерения тока нагрузок


-U – подключение отрицательного полюса напряжения выпрямителей

LVDx – реле для отключения батареи или нагрузки при низком напряжении (low voltage disconnection relay)



5.2.6. Система электропитания с двумя реле LVD с выборочным отключением нагрузки

В системе с двумя реле LVD с выборочным отключением нагрузки можно установить макс. два автоматических выключателя для защиты батарей или два автоматических выключателя для защиты нагрузки.

ВFх – автоматические выключатели для защиты аккумуляторной батареи х

LFx – автоматические выключатели для защиты нагрузки x

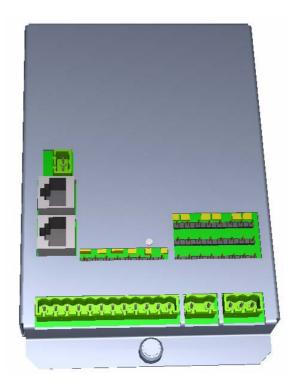
BSx – шунтирующий резистор для измерения тока батареи

LSx – шунтирующий резистор для измерения тока нагрузок

-U – подключение отрицательного полюса напряжения выпрямителей

LVDx – реле для отключения батареи или нагрузки при низком напряжении (low voltage disconnection relay)

6. Блок контроля распределения постоянного тока (ARG)

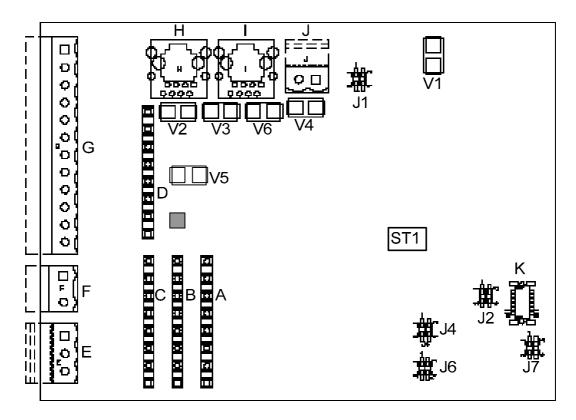

В блоке контроля распределения постоянного тока (ARG) находится микроконтроллер, который с контрольным блоком ARH осуществляет коммуникацию по протоколу RS485. Блок размещен в верхней части секции MRN и прикреплен винтами к задней стенке распределительного блока. Блок закрыт крышкой, которая защищает блок от повреждений. Данный блок является обязательным блоком для основной работы системы электропитания. В случае выключения блока ARG выключаются реле LVD, тогда в системе будут отключены батареи и неприоритетная нагрузка.

Внимание!

Перед заменой или выключением блока ARG необходимо обеспечить, чтобы управление реле LVD осуществлялось питающим напряжением системы, а не посредством блока ARG.

Блок ARG состоит из:

- платы ARG и
- металлического корпуса.



6.1. Функции ARG

Блок ARG выполняет следующие функции:

- управление тремя реле LVD;
 - аналоговое управление трех реле LVD (с помощью короткозамыкателя на разъеме J1 выбран уровень выключения 42 В или 52,5 В);
 - процессорное управление тремя реле LVD;
 - процессорное переключение между аналоговым и процессорным управлением реле LVD (аналоговое управление после сброса микроконтроллера, в случае потери коммуникации с контрольным блоком ARH или отказа блока ARG);
- контроль состояния трех реле LVD;
- контроль состояния автоматических выключателей и предохранителей;
- контроль подключения батарей 1, 2 или 3 к системе для индивидуального заряда с повышенным внешним напряжением;
- измерение тока нагрузки 1;
- измерение тока нагрузки 2 или батареи 3 (установка с помощью перемычки на разъеме J7);
- измерение тока батареи 1 и батареи 2;
- коммуникация с контрольным блоком ARH,
 - передача данных об измеренных значениях и состоянии автоматических выключателей, предохранителей, реле LVD и индивидуального заряда по запросу процессора блока ARH;
 - прием данных для управления реле LVD.

Светодиод на блоке ARL служит индикатором работы микроконтроллера.

Плата ARG

6.2. Описание разъемов

- A 8-контактный разъем для подключения датчиков автоматических выключателей CB1 CB8
- В 8-контактный разъем для подключения датчиков автоматических выключателей CB9 – CB16
- С 8-контактный разъем для подключения датчиков автоматических выключателей CB17 – CB24
- D 8-контактный разъем для подключения датчиков автоматических выключателей или предохранителей LF1-LF3 и BF1-BF4
- Е разъем для подключения аварийных сигналов индивидуального заряда батарей
- F разъем для подключения реле LVD 3
- G разъем для подключения четырех шунтирующих резисторов и двух реле LVD
- Н разъем для подключения к интерфейсу RS485
- разъем для подключения к интерфейсу RS485
- Ј разъем для подключения системного напряжения
- К разъем для подключения к порту RS232 компьютера

6.3. Описание короткозамыкателей, предохранителей и переключателя

- J1 Установка системного напряжения:
 - короткозамыкатель на контактах 1-2 для системы 48 В;
 - короткозамыкатель на контактах 3-4 для системы 60 В.
- J2 Установка режима работы микроконтроллера:
 - короткозамыкатель на контактах 1-2 обеспечивает загрузку ПО через интерфейс RS232 (заводская установка).
- J4 Установка резистора-терминатора интерфейса RS485:
 - короткозамыкатель на контактах 1-2 терминирует интерфейс RS485 с 121 Ом.
- J6 Перезагрузка микроконтроллера:
 - короткозамыкатель на контактах 1-2 обеспечивает перезагрузку во время загрузки ПО через интерфейс RS232 (заводская установка);
 - короткозамыкатель на контактах 1-3 осуществляет перезагрузку микроконтроллера.
- J7 Установка измерителя тока:
 - короткозамыкатель на контактах 1-2 для тока нагрузки ІВАТЗ;
 - короткозамыкатель на контактах 3-4 для тока батареи ILOAD2 (заводская установка).
- V1 Плавкий мини-предохранитель F1,5 A для защиты вспомогательного питания +12 B платы VRQ
- V2,V3,V5 плавкий мини-предохранитель F0,5 A для защиты системного напряжения -U
 V4 плавкий мини-предохранитель F1 A для защиты системного напряжения -U
 V6 плавкий мини-предохранитель F250 мA для защиты системного напряжения -U
- ST1 переключатель должен быть установлен на заводе (переключатели должны быть в положении OFF)

Внимание!

Установку короткозамыкателей и замену предохранителей может выполнять только уполномоченный специалист по сервисному обслуживанию.

6.4. Расположение контактов разъема

8-контактные разъемы

	Разъем А	Разъем В	Разъем С	Разъем D
1	CB8	CB16	CB24	LF1
2	CB7	CB15	CB23	LF2
3	CB6	CB14	CB22	LF3
4	CB5	CB13	CB21	
5	CB4	CB12	CB20	BF4
6	CB3	CB11	CB19	BF3
7	CB2	CB10	CB18	BF2
8	CB1	CB9	CB17	BF1

Разъемы типа RJ8/8

	Разъем Н	Разъем І
1	+5V	+5V
2	GND	GND
3	TRX+485	TRX+485
4	TRX-485	TRX-485
5	GND	GND
6	+5V	+5V
7	-12V	-12V
8	+12V	+12V

2-контактный разъем Phoenix

	Разъем	Разъем
	F	J
1	BATS3	MR
2	ABATS3	-U

3-контактный разъем Phoenix

	Разъем Е
1	RELE1
2	RELE2
3	RELE3

12-контактный разъем Phoenix

KUHTAK	іпвій разве	
	Разъем	
	G	
1	ILOAD1+	
2	ILOAD1-	
3	ILOAD2+	
4	ILOAD2-	
5	IBAT1+	
6	IBAT1-	
7	IBAT2+	
8	IBAT1-	
9	BATS1	
10	ABATS1	
11	BATS2	
12	ABATS2	

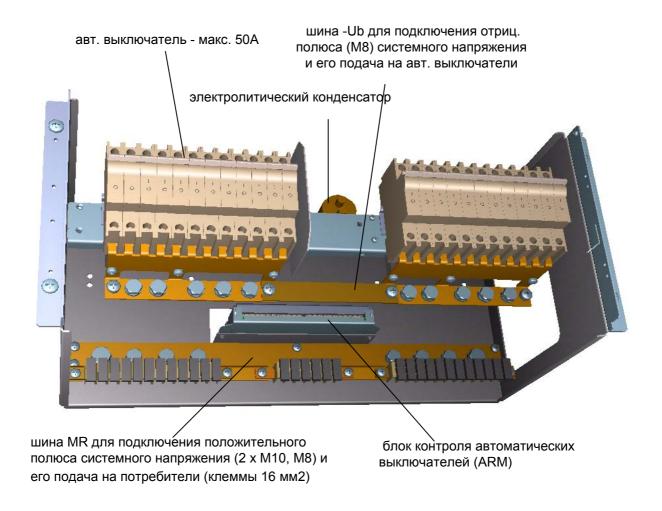
7. Дополнительный блок распределения постоянного тока

7.1. Вторичный распределительный блок с автоматическими выключателями (FRM)

В системе MPS вторичный распределительный блок (FRM) используется для питания дополнительных потребителей или когда число потребителей превышает емкость автоматических выключателей, находящихся в основном блоке распределения постоянного тока.

Блок FRM — это 19-дюймовый блок глубиной 260 мм и высотой 5U. Передняя сторона блока FRM закрыта крышкой с отверстием, через которое видны автоматические выключатели. В блок FRM можно установить до 30 автоматических выключателя на номинальный ток от 1 A до 50 A, которые служат для защиты потребителей. 24 автоматических выключателя связаны с блоком ARM, который передает информацию о выключении автоматического выключателя контрольному блоку. 6 автоматических выключателей не подклежат контролю. На блоке ARM находится микроконтроллер, который осуществляет коммуникацию с контрольным блоком системы ARH через протокол RS485.

Основной вариант блока FRM состоит из:


- корпуса секции;
- шины MR для подключения положительного полюса системного напряжения;
- клемм MR для подключения потребителей;
- шины -UB для подключения отрицательного полюса системного напряжения и разводки на автоматические выключатели;
- электролитических конденсаторов;
- шины -UB для подключения 12 автоматических выключателей;
- блока контроля автоматических выключателей ARMBA.

Существует опция расширения блока FRM с:

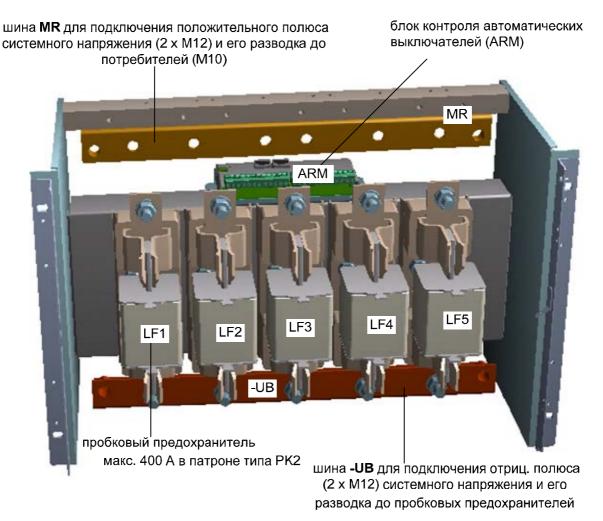
- дополнительными клеммами MR для подключения потребителей;
- шиной -UB для подключения дополнительных 12 автоматических выключателей;
- шиной -UB для подключения дополнительных 6 автоматических выключателей.

Основной блок 12 автоматических выключателей обеспечивает подключение нагрузок до 200 А. Если блок FRM добавляет 12 дополнительных автоматических выключателей, что означает дополнительную нагрузку 200 А, однако подключение FRM к системному напряжению выполнено двумя соединительными кабелями (отдельно к каждому комплекту 12 автоматических выключателей), хотя они связаны медной шиной. Дополнительный комплект 6 автоматических выключателей не увеличивает максимальную подключенную нагрузку 200 А или 400 А при двух комплектах.

Польностью оборудованный вторичный распределеительный блок (FRM)

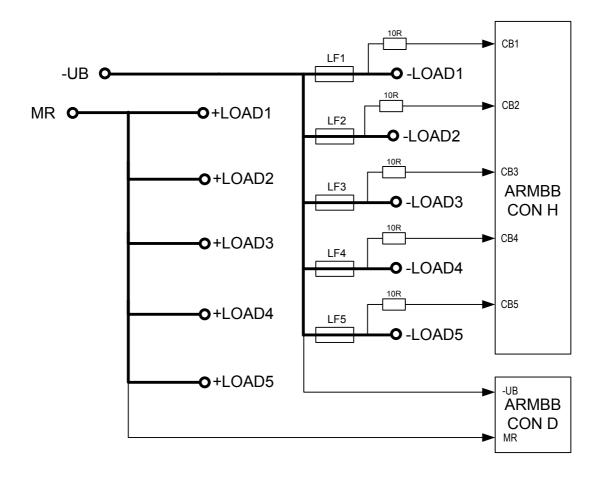
7.2. Вторичный распределительный блок с пробковыми предохранителями 400 A (FRK)

В системе электропитания вторичный распределительный блок FRK используется для питания дополнительных потребителей или когда число потребителей превышает емкость автоматических выключателей или предохранителей, находящихся в основном блоке распределения постоянного тока.


Блок FRK – это 19-дюймовый блок глубиной 220 мм и высотой 7U, у которого на передней стороне расположены двери.

Блок ARК состоит из:

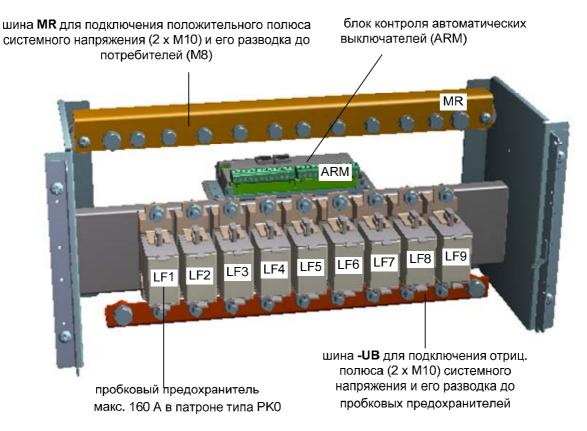
- корпуса секции,
- пяти патронов РК2 пробкового предохранителя типа NV/NH2 с макс. номинальным значением 400 A.
- шины заземления для разводки MR до потребителей и батарей, а также для подключения к медной вертикальной шине положительного полюса выпрямителей,
- шины -UB для подключения к медной вертикальной шине отрицательного полюса выпрямителей и разводка к пробковым предохранителям,
- контрольного блока предохранителей (ARMBB).


Предохранители подключены к контрольному блоку предохранителей ARMBB, которые передают информацию о перегорании предохранителя контрольному блоку ARH. На блоке ARM находится микроконтроллер, который осуществляет коммуникацию с контрольным блоком системы ARH через протокол RS485.

Польностью оборудованный вторичный распределеительный блок (FRK)

7.2.1. Блок-схема блока FRK

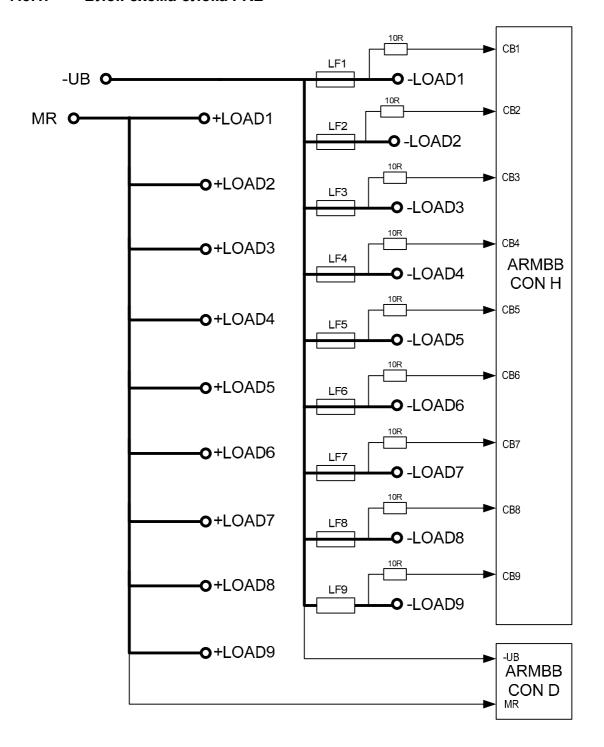
7.3. Вторичный распределительный блок с пробковыми предохранителями 160 A (FRL)


В системе MPS вторичный распределительный блок FRL используется для питания дополнительных потребителей или когда число потребителей превышает емкость пробковых предохранителей, находящихся в основном блоке распределения постоянного тока.

Блок FRL – это 19-дюймовый блок глубиной 190 мм и высотой 5U, у которого на передней стороне расположены двери.

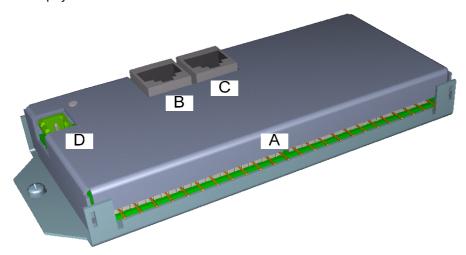
Блок FRL состоит из:

- корпуса секции;
- девяти патронов РК2 пробкового предохранителя типа NV/NH2 с макс. номинальным значением 160 A;
- шины заземления для разводки MR до потребителей и батарей, а также для подключения к медной вертикальной шине положительного полюса выпрямителей;
- шины -UB для подключения к медной вертикальной шине выходного напряжения -UB выпрямителей и разводки к пробковым предохранителям;
- контрольного блока предохранителей (ARMBB).

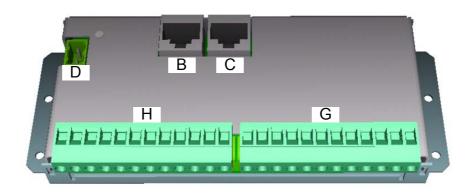

Предохранители подключены к контрольному блоку предохранителей ARMBB, которые передают информацию о перегорании предохранителя контрольному блоку ARH. На блоке ARM находится микроконтроллер, который осуществляет коммуникацию с контрольным блоком системы ARH через протокол RS485.

Польностью оборудованный вторичный распределительный блок (FRL)

7.3.1. Блок-схема блока FRL


8. Блок контроля автоматических выключателей (ARM)

Изготовлено два варианта блока ARM - вариант ARMBA и вариант ARMBB. Они отличаются между собой только разъемом для подключения.

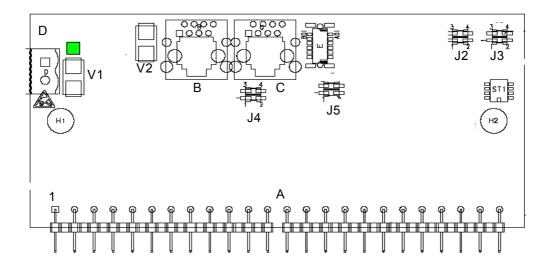

В блоке ARMBх находится микроконтроллер, который с контрольным блоком ARH осуществляет коммуникацию по протоколу RS485. Контрольный блок размещен в секции контролируемых предохранителей или автоматических выключателей. Блок закрыт крышкой, которая защищает блок от повреждений. Данный блок не является обязательным блоком для основной работы системы электропитания.

Блок ARMBx состоит из:

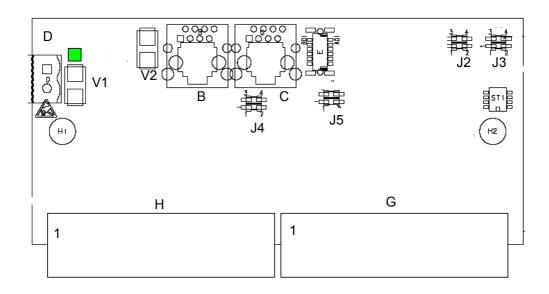
- платы VRRBx и
- металлического корпуса.

Блок ARMBA

Блок ARMBB



8.1. Функции ARMBx


Блок ARG выполняет следующие функции:

- контроль состояния 24 автоматических выключателей или пробковых предохранителей секции, к которым подключена нагрузка;
- коммуникация с контрольным блоком ARH,
 - передача данных о состоянии автоматических выключателей и предохранителей по запросу процессора блока ARH.

Светодиод на блоке ARL служит индикатором работы микроконтроллера.

Плата VRRBA

Плата VRRBB

8.2. Описание разъемов блока VRRBA

- А 24-контактный разъем для подключения датчиков автоматических выключателей
- B разъем для подключения к RS485
- С разъем для подключения к RS485
- D разъем для подключения системного напряжения
- E разъем для подключения к порту компьютера RS232

8.3. Описание разъемов блока VRRBB

- В разъем для подключения к RS485
- С разъем для подключения к RS485
- D разъем для подключения системного напряжения
- E разъем для подключения к порту RS232 компьютера
- Н 12-контактный разъем для подключения датчиков пробковых выключателей
- G 12-контактный разъем для подключения датчиков пробковых выключателей

8.4. Описание короткозамыкателей и предохранителей

- J2 Не используется
- J3 Установка резистора-терминатора интерфейса RS48:
 - короткозамыкатель на контактах 1-2 терминирует интерфейс RS485 с 121 Ом.
- J4 Перезагрузка микроконтроллера:
 - короткозамыкатель на контактах 1-2 обеспечивает перезагрузку во время загрузки ПО через интерфейс RS232 (заводская установка);
 - короткозамыкатель на контактах 1-3 осуществляет перезагрузку микроконтроллера.
- Установка режима работы микроконтроллера:
 - короткозамыкатель на контактах 1-2 обеспечивает загрузку ПО через интерфейс RS232 (заводская установка).
- V1 Плавкий мини-предохранитель F0,5 A для защиты системного напряжения -U
- V2 Плавкий мини-предохранитель F1 A для защиты вспомогательного питания +12B платы VRR
- ST1 Установка переключателей определяет порядковый номер блока ARM (от 1 до 8). Контрольный блок устанавливает соединение только с блоками ARM, у которых переключатель ST1-1 установлен в положение OFF. См. таблицу!

ST1-1	ST1-2	ST1-3	ST1-4	ARM
OFF	OFF	OFF	OFF	1
OFF	OFF	OFF	ON	2
OFF	OFF	ON	OFF	3
OFF	OFF	ON	ON	4
OFF	ON	OFF	OFF	5
OFF	ON	OFF	ON	6
OFF	ON	ON	OFF	7
OFF	ON	ON	ON	8

Внимание!

Установку короткозамыкателей и замену предохранителей может выполнять только уполномоченный специалист по сервисному обслуживанию.

8.5. Расположение контактов разъема

<u> 24-контактный разъем (ETN2095BA) ил</u>и 12-контактный разъем (ETN2095BB)

24-ко	24-контактный разъем (ETN2095BA) ил				
	Разъем	Разъем	Разъем		
	Α	Н	G		
1	CB1	CB1	CB13		
2	CB2	CB2	CB14		
3	CB3	CB3	CB15		
4	CB4	CB4	CB16		
5	CB5	CB5	CB17		
6	CB6	CB6	CB18		
7	CB7	CB7	CB19		
8	CB8	CB8	CB20		
9	CB9	CB9	CB21		
10	CB10	CB10	CB22		
11	CB11	CB11	CB23		
12	CB12	CB12	CB24		
13	CB13		_		
14	CB14				
15	CB15				
16	CB16				
17	CB17				
18	CB18				
19	CB19				
20	CB20				
21	CB21				
22	CB22]			
23	CB23				

Разъемы типа RJ8/8

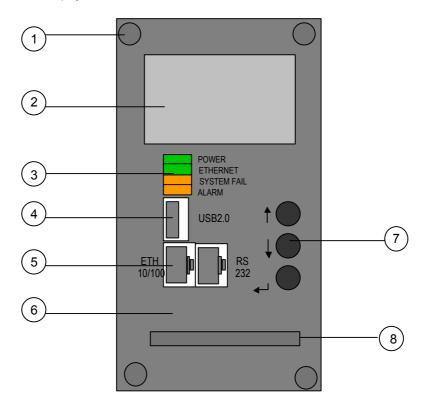
CB24

	Разъем В	Разъем С
1	+5V	+5V
2	GND	GND
3	TRX+485	TRX+485
4	TRX-485	TRX-485
5	GND	GND
6	+5V	+5V
7	-12V	-12V
8	+12V1,5	+12V
	В	

2-контактный разъем Phoenix

	Разъем
	D
1	MR
2	-U

12-контактный мини-разъем


	Разъем Е
A1	RX
A2	TX
A3	GND
B5	DTR
B6	RTS

9. Контрольный блок ARH

Контрольный блок позволяет производить измерение различных величин системы и окружения. На лицевой панели контрольного блока находятся дисплей и кнопки, с помощью которых можно управлять некоторыми функциями системы электропитания. Блок ARH состоит из:

- основной платы (VRL);
- процессорной платы (CDL), которая с использованием двух разъемов закреплена к основной плате:
- платы с дисплеем и кнопками (VRM), которая подключена к основной плате (VRL);
- металлического корпуса.

Лицевая панель контрольного блока

- 1 отверстие для крепления блока винтами
- 2 индикатор (дисплей) измеренных значений и аварийных состояний
- 3 светодиоды для индикации наличия питания, работы сети, аварийных сигналов системы и ее окружения
- 4 разъем для порта USB
- 5 разъем для порта Ethernet и коммуникационного канала RS232
- 6 лицевая панель
- 7 кнопки управления дисплеем
- 8 рычаг для извлечения контрольного блока

9.1. Технические характеристики контрольного блока ARH

Вход

Номинальное 48 В, 60 В

напряжение

Допустимое напряжение от 40 B до 75 B Ток макс. 1 A

Прочие данные

Безопасность согласно IEC 950 класс 1

Изоляция усиленная изоляция, тестируемая при: 0,5 кВ пост. тока (вторичные цепи

относительно корпуса)

Защита мех. ІР20

конструкции

Излучение радипомех согласно CISPR класс В

Низкочастотный шум < 35 дБА

Температура окружения от 0° C до +50° C Температура хранения от -40° C до +70° C Относительная от 5 % до 90 %

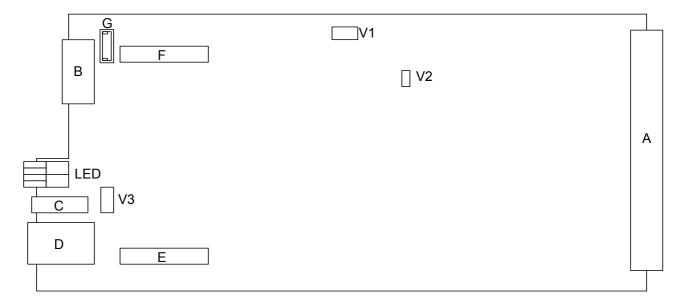
влажность

Охлаждение естественное Вибрация согласно IEC 68-2-6

Транспортировка согласно ІЕС 68-2-27 и 68-2-29

Габаритные размеры 71,12 мм х 126,4 мм х 247 мм (ширина х высота х длина)

Bec 13,5 H


9.2. Подключение контрольного блока

Контрольный блок - это съемный блок, который подключается к задней панели. Контрольный блок подключен к задней панели одним 96-контактным разъемом.

9.3. Основная плата (VRL)

Основная плата - это съемная четырехслойная печатная плата. Она изготовлена по технологии SMT; на плате из-за специфических требований также установлены дискретные электронные компоненты. Габаритные размеры основной платы - 220 мм х 100 мм.

Плата VRL

9.3.1. Описание разъемов

- 96-контактный разъем, который предназначен для соединения питающих и сигнальных проводов с задней панелью
- В 26-контактный разъем, который служит для соединения с платой VRM
- C разъем USB
- D разъем Ethernet и RS232
- Е и F 64-контактные разъемы, которые предназначены для соединения с процессорной платой CDL
- G 12-контактный разъем для загрузки CPLD

9.3.2. Описание короткозамыкателей и предохранителей

- J1 короткозамыкатель для записи/чтения идентификатора; во время работы блока короткозамыкатель должен быть установлен в положение 1-2
- V1 плавкий мини-предохранитель F0,5 A для защиты питания +5 B устройства USB
- V2 рлавкий мини-предохранитель F0,75 A для защиты вспомогательного питания +12 B платы VRL
- V3 плавкий мини-предохранитель F1 A для защиты вспомогательного питания +12 В платы VRQ

Внимание!

Установку короткозамыкателей и замену предохранителей может выполнять только уполномоченный специалист по сервисному обслуживанию.

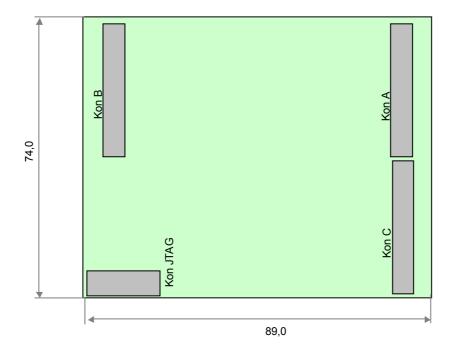
9.3.3. Расположение контактов разъема

Разъем А

газьем А				
	Α	В	С	
1	MR	-UB	MR	
2	A1+	A1P	A1-	
3	A2+	A2P	A2-	
4	A3+	A3P	A3-	
5	A4+	A4P	A4-	
6	A5+	A5P	A5-	
7	A6+	A6P	A6-	
8	SL1	SL2	SL3	
9	ID0	ID1	ID2	
10	ID3	IDCOM	EN1	
11	AS1-	AS2-	RX1	
12	AS1+	AS2+	TX1	
13	RX2	AS6-	AS3-	
14	TX2	AS6+	AS3+	
15	ILOAD	ALARM5	ALARM7	
16	IBAT+	ALARM6	ALARM8	
17	IBAT-	ALARM1	ALARM3	
18	VCALL	ALARM2	ALARM4	
19	AD_DIG	MER	AL2F	
20	LVD	TVC	AL1F	
21	FUSES			
22	REF+0.5V	CS0F	CS1F	
23	CS2F	CS4F	CS5F	
24	A0F	A1F	A2F	
25	+12VF	+5VF	-5VF	
26	FGND	VENT	-UB2	
27	+12V	ON-OFF	RE	
28	TRX+485_1	TRX+485_2	TRX+485_3	
29	TRX-485_1	TRX-485_2	TRX-485_3	
30	CAN_H	CAN_L	CAN_GND	
31	+12V	+5V	-12V	
32	MR	GND	MR	

Разъем С – разъем USB

1	VBUS
2	USB_D_N
3	USB_D_P
4	GND



Разъем D

	Α	В
1	ETH0_TX_P	DTR
2	ETH0_TX_N	CTS
3	ETH0_RX_P	GND
4		RXD
5		TXD
6	ETH0_RX_N	GND
7		RTS
8		DCD

9.4. Процессорная плата (CDL)

Процессорная плата - это дочерняя шестислойная печатная плата. Она изготовлена по технологии SMT. Габаритные размеры платы - 74 x 75 мм.

Плата CDL

9.4.1. Описание разъемов

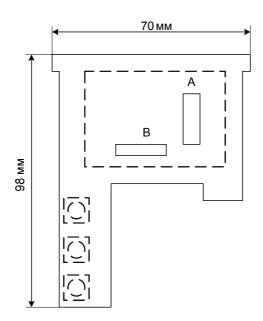
А и В - 64-контактные разъемы, предназначенные для соединения с основной платой

С - 64-контактный разъем, используемый в системе электропитания

JTAG - 26-контактный разъем для загрузки CPLD

9.4.2. Описание короткозамыкателя

J1 - идентификатор платы CDL:


- короткозамыкатель на контактах 1-2 – чтение идентификатора.

Внимание!

Установку короткозамыкателей и замену предохранителей может выполнять только уполномоченный специалист по сервисному обслуживанию.

9.5. Плата VRM – дисплей и кнопки

Это двухслойная плата, имеющая несимметричную форму. Габаритные размеры платы указаны на рисунке ниже.

Плата VRM

9.5.1. Описание разъемов

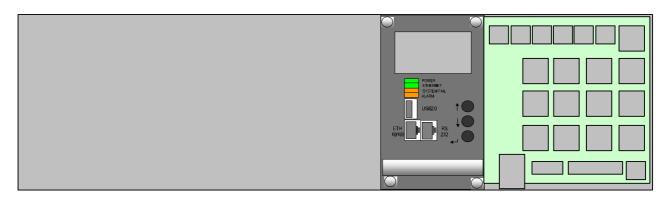
А - 26-контактный разъем, который предназначен для соединения с основной платой
 В - 28-контактный разъем, который предназначен для подключения LCD-дисплея

9.6. Функции контрольного блока

Функции контрольного блока описаны в главе Функции конрольного блока и описание аварийных состояний.

10. Контрольная секция (MRM)

В состав контрольной секции входит контрольный блок ARH. Контрольная секция MRM - это блок изготовленный на базе 19-дюймовой технологии, который, прежде всего, предназначен для установки контрольного блока ARH. Высота корпуса составляет 3U (1U = 44,3 мм), а глубина 250 мм. Контрольный блок ARH и поле подключений находятся в правой части контрольной секции. Левая половина секции MRM, в которой находится задняя панель BRM с конверторами или инверторам или блок распределения переменного тока, может быть пустой и закрыта крышкой.

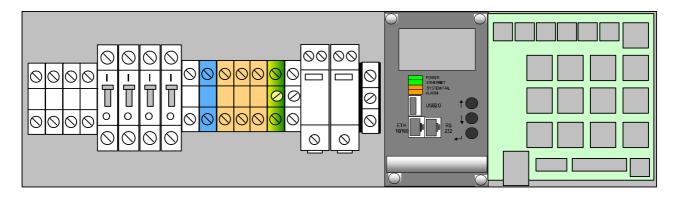

Описание данного блока дается в главе *Блок распределения переменного тока* в основной секции MRM.

10.1. Основная секция МРМ

К соединительным шинам, соединяющим боковые стенки корпуса, прикреплены направляющие шины, предназначенные для установки контрольного блока в корпус. Одна крышка контрольной секции MRM предназначена для закрытия правой части секции, а второй для закрытия левой части секции, в которой находится поле с разъемами и переключатель S для включения-выключения контрольного блока ARH. Задняя панель BRN служит для соединения контрольного блока ARH с контрольмыми блоками основных и дополнительных компонентов системы, а также внешних устройств.

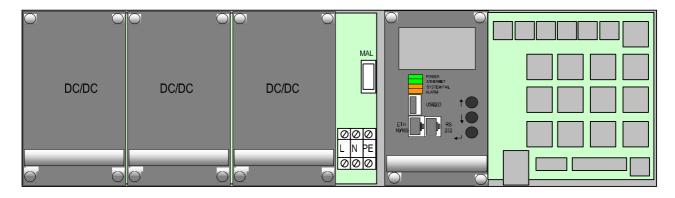
Основная секция MRM состоит из:

- механического корпуса;
- двух крышек;
- задней панели BRN.



Основная секция MRM без крышек

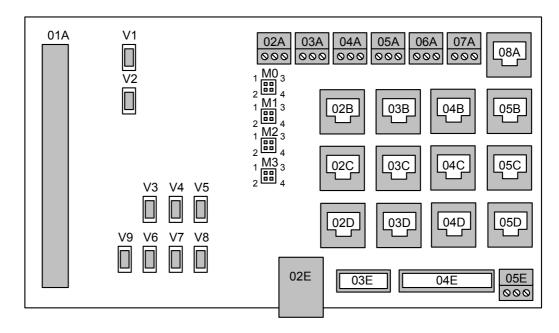
10.2. Секция MRM с блоком распределения переменного тока


На левой стороне основной секции монтируется трехфазный блок распределения переменного тока 230/400 В или трехфазный блок распределения переменного тока 127/220 В.

Секция MRM с блоком распределения переменного тока

10.3. Секция MRM с вольтодобавочными конверторами или инверторами

На левой стороне основной секции монтируется задняя панель BRM, к которой можно подключить до 3 дополнительных вольтодобавочных конверторов или инверторов. Позиции, на которых вольтодобавочный конвертор или инвертор отсутствуют, закрыты заглушкой.



Секция MRM с вольтодобавочными конверторами или инверторами без крышек

10.4. Задняя панель BRN

Задняя панель — это двухсторонняя печатная плата. На левой стороне задней панели припаян разъем для подключения контрольного блока ARH. На правой стороне платы находится поле подключений с различными сигнальными разъемами, используемыми для соединения контрольного блока со составными частями системы электропитания и окружения. Кроме сигнальных разъемов на плате находятся еще предохранители для защиты контрольного блока ARH и короткозамыкатели, с помощью которых задается тип системы электропитания, в которой находится секция MRM.

Задняя панель BRN

10.4.1. Описание разъемов

- 01A разъем DIN41612, тип С96, для подключения контрольного блока ARH
- 02А разъем для подключения реле 1
- 02В разъем для подключения температурного датчика ТА для измерения температуры окружения системы электропитания
- 02C разъем для подключения к секциям выпрямителей MRR и MRQ
- 02D разъем для подключения блоков ARG
- 02E разъем для подключения вентиляторного блока FRD
- 03А разъем для подключения реле 2
- 03В разъем для подключения температурного датчика ТВ для измерения температуры в окружении батареи
- 03С в настоящей версии не используется!
- 03D разъем для подключения блоков ARI
- 03E разъем для подключения секции MRP, предназначенной для контроля макс. 6 дополнительных конверторов или инверторов и задней панели BRM с максимум тремя конверторами или инверторами
- 04А разъем для подключения реле 3
- 04B разъем для подключения температурного датчика ТА для измерения температуры окружения системы электропитания
- 04С разъем для подключения аварийных датчиков (1-4)

04D - разъем для подключения блоков ARJ, ARK, ARL и ARM 04E - разъем для подключения секций выпрямителей MRD

05А - разъем для подключения реле 4

05В - разъем для подключения датчика влажности

05С - разъем для подключения аварийных датчиков (5-8)

05D - разъем для подключения к VEA

05E - разъем для подключения переключателя S1, используемого для выключения и питания

контрольного блока через предохранитель в кабеле

06A - разъем для подключения реле 5 07A - разъем для подключения реле 6

08A - разъем для подключения платы VRH с измерительными трансформаторами

10.4.2. Описание короткозамыкателей и предохранителей

М0-М3 - короткозамыкатели для идентификации системы электропитания
 V1 - плавкий мини-предохранитель F4 A для защиты контрольного блока ARH
 V2 - плавкий мини-предохранитель F0,25 A для защиты контрольного блока FRD
 V3 - плавкий мини-предохранитель F0,25 A для защиты питания датчика влажности
 V4 - плавкий мини-предохранитель F1A для защиты питания +12 B блоков ARI, ARJ, ARK, ARL, ARM
 V5 - плавкий мини-предохранитель F1 A для защиты питания +12 B блоков ARG
 V6 - плавкий мини-предохранитель F0,25 A для защиты питания +5 B (RS485) блоков в

√6 - плавкий мини-предохранитель F0,25 A для защиты питания +5 B (RS485) блоков в секциях MRR и MRQ

V7 - плавкий мини-предохранитель F0,25 A для защиты питания +5 B блоков ARG

V8 - плавкий мини-предохранитель F0,25 A для защиты питания -12 B блоков ARI, ARJ,

ARK, ARL, ARM, ARG

V9 - плавкий мини-предохранитель F1 A для защиты -UB

Установка короткозамыкателей:

М3	M2	M2	M0	Система	Напряжение	Тип выпрамителя
0	0	0	0	MPS1000.50	48 B	CMP3.48
0	0	0	1	не используется		
0	0	1	0	не используется		
0	0	1	1	не используется		
0	1	0	0	MPS1000.200	48 B	FMP18.48, FMP32.48
0	1	0	1	MPS1000.200	48 B	PMP13.48
0	1	1	0	не используется		
0	1	1	1	MPS1000.200	60 B	PMP11.60
1	0	0	0	не используется		
1	0	0	1	не используется		
1	0	1	0	не используется		
1	0	1	1	не используется		
1	1	0	0	MPS1000.600	48 B	FMP32.48
1	1	0	1	не используется	_	
1	1	1	0	не используется		
1	1	1	1	MPS1000.1500	48 B	FMP32.48

Внимание!

Настройку потенциометров и замену предохранителей может выполнять только уполномоченный специалист по сервисному обслуживанию.

10.4.3. Расположение контактов разъема

Разъемы типа C96, позиция 01A – подключение контрольного блока ARH

A B C 1 MR -UB MR 2 A1+ A1P A1- 3 A2+ A2P A2- 4 A3+ A3P A3- 5 A4+ A4P A4- 6 A5+ A5P A5- 7 A6+ A6P A6- 8 SL1 SL2 SL3 9 IDO ID1 ID2 10 ID3 IDCOM EN1 11 AS1- AS2- RX1 12 AS1+ AS2+ TX1 13 RX2 AS6- AS3- 14 TX2 AS6- AS3- 14 TX2 AS6- AS3+ 15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM4 19 AD DIG MER AL2F	Разъемь	ы типа Сэб, пози	ция ота – подкль	очение контролы
2 A1+ A1P A1- 3 A2+ A2P A2- 4 A3+ A3P A3- 5 A4+ A4P A4- 6 A5+ A5P A5- 7 A6+ A6P A6- 8 SL1 SL2 SL3 9 ID0 ID1 ID2 10 ID3 IDCOM EN1 11 AS1- AS2- RX1 12 AS1+ AS2- RX1 12 AS1+ AS2+ TX1 13 RX2 AS6- AS3- 14 TX2 AS6- AS3- 14 TX2 AS6+ AS3+ 15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F 20 LVD TVC AL1F <t< th=""><th></th><th>Α</th><th>В</th><th>С</th></t<>		Α	В	С
3 A2+ A2P A2- 4 A3+ A3P A3- 5 A4+ A4P A4- 6 A5+ A5P A5- 7 A6+ A6P A6- 8 SL1 SL2 SL3 9 IDO ID1 ID2 10 ID3 IDCOM EN1 11 AS1- AS2- RX1 12 AS1+ AS2- RX1 13 RX2 AS6- AS3- 14 TX2 AS6- AS3- 14 TX2 AS6- AS3- 15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F 20 LVD TVC AL1F 21 FUSES CS1F CS5F 24 AOF A1F A2F	1	MR	-UB	MR
3 A2+ A2P A2- 4 A3+ A3P A3- 5 A4+ A4P A4- 6 A5+ A5P A5- 7 A6+ A6P A6- 8 SL1 SL2 SL3 9 IDO ID1 ID2 10 ID3 IDCOM EN1 11 AS1- AS2- RX1 12 AS1+ AS2- RX1 13 RX2 AS6- AS3- 14 TX2 AS6- AS3- 14 TX2 AS6- AS3- 15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F 20 LVD TVC AL1F 21 FUSES CS1F CS5F 24 AOF A1F A2F	2	A1+	A1P	A1-
5 A4+ A4P A4- 6 A5+ A5P A5- 7 A6+ A6P A6- 8 SL1 SL2 SL3 9 ID0 ID1 ID2 10 ID3 IDCOM EN1 11 AS1- AS2- RX1 12 AS1+ AS2- RX1 13 RX2 AS6- AS3- 14 TX2 AS6- AS3- 14 TX2 AS6- AS3- 14 TX2 AS6+ AS3- 15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F <tr< td=""><td>3</td><td>A2+</td><td>A2P</td><td>A2-</td></tr<>	3	A2+	A2P	A2-
5 A4+ A4P A4- 6 A5+ A5P A5- 7 A6+ A6P A6- 8 SL1 SL2 SL3 9 ID0 ID1 ID2 10 ID3 IDCOM EN1 11 AS1- AS2- RX1 12 AS1+ AS2- RX1 13 RX2 AS6- AS3- 14 TX2 AS6- AS3- 14 TX2 AS6- AS3- 14 TX2 AS6+ AS3- 15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F <tr< td=""><td>4</td><td>A3+</td><td>A3P</td><td>A3-</td></tr<>	4	A3+	A3P	A3-
7 A6+ A6P A6- 8 SL1 SL2 SL3 9 ID0 ID1 ID2 10 ID3 IDCOM EN1 11 AS1- AS2- RX1 12 AS1+ AS2- TX1 13 RX2 AS6- AS3- 14 TX2 AS6+ AS3+ 15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F 20 LVD TVC AL1F 21 FUSES S CS1F 22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND </td <td>5</td> <td>A4+</td> <td>A4P</td> <td>A4-</td>	5	A4+	A4P	A4-
8 SL1 SL2 SL3 9 ID0 ID1 ID2 10 ID3 IDCOM EN1 11 AS1- AS2- RX1 12 AS1+ AS2- TX1 13 RX2 AS6- AS3- 14 TX2 AS6+ AS3- 15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM8 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F 20 LVD TVC CS1F 23 CS2F <td>6</td> <td>A5+</td> <td>A5P</td> <td>A5-</td>	6	A5+	A5P	A5-
9 ID0 ID1 ID2 10 ID3 IDCOM EN1 11 AS1- AS2- RX1 12 AS1+ AS2+ TX1 13 RX2 AS6- AS3- 14 TX2 AS6+ AS3+ 15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F 20 LVD TVC AL1F 21 FUSES - CS1F 22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 <t< td=""><td>7</td><td>A6+</td><td>A6P</td><td>A6-</td></t<>	7	A6+	A6P	A6-
10 ID3 IDCOM EN1 11 AS1- AS2- RX1 12 AS1+ AS2+ TX1 13 RX2 AS6- AS3- 14 TX2 AS6+ AS3+ 15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F 20 LVD TVC AL1F 21 FUSES E 22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 30 C	8	SL1	SL2	SL3
11 AS1- AS2- RX1 12 AS1+ AS2+ TX1 13 RX2 AS6- AS3- 14 TX2 AS6+ AS3+ 15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F 20 LVD TVC AL1F 21 FUSES FUSES CS1F 22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12	9	ID0	ID1	ID2
12 AS1+ AS2+ TX1 13 RX2 AS6- AS3- 14 TX2 AS6+ AS3+ 15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F 20 LVD TVC AL1F 21 FUSES CS1F 22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX-485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	10	ID3	IDCOM	EN1
13 RX2 AS6- AS3- 14 TX2 AS6+ AS3+ 15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F 20 LVD TVC AL1F 21 FUSES CS1F CS1F 22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V <	11	AS1-	AS2-	RX1
14 TX2 AS6+ AS3+ 15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F 20 LVD TVC AL1F 21 FUSES CS1F CS1F 22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	12	AS1+	AS2+	TX1
15 ILOAD ALARM5 ALARM7 16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD DIG MER AL2F 20 LVD TVC AL1F 21 FUSES CS1F 22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	13	RX2	AS6-	AS3-
16 IBAT+ ALARM6 ALARM8 17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F 20 LVD TVC AL1F 21 FUSES CS1F 22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	14	TX2	AS6+	AS3+
17 IBAT- ALARM1 ALARM3 18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F 20 LVD TVC AL1F 21 FUSES CS1F 22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	15	ILOAD	ALARM5	ALARM7
18 VCALL ALARM2 ALARM4 19 AD_DIG MER AL2F 20 LVD TVC AL1F 21 FUSES CS1F 22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	16	IBAT+	ALARM6	ALARM8
19 AD_DIG MER AL2F 20 LVD TVC AL1F 21 FUSES 22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	17	IBAT-	ALARM1	ALARM3
20 LVD TVC AL1F 21 FUSES 22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	18	VCALL	ALARM2	ALARM4
21 FUSES 22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	19	AD_DIG	MER	AL2F
22 REF+0.5V CS0F CS1F 23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	20	LVD	TVC	AL1F
23 CS2F CS4F CS5F 24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	21	FUSES		
24 A0F A1F A2F 25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	22	REF+0.5V	CS0F	CS1F
25 +12VF +5VF -5VF 26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	23	CS2F	CS4F	CS5F
26 FGND VENT -UB2 27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	24	A0F	A1F	A2F
27 +12V ON-OFF RE 28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	25	+12VF	+5VF	-5VF
28 TRX+485_1 TRX+485_2 TRX+485_3 29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	26	FGND	VENT	-UB2
29 TRX-485_1 TRX-485_2 TRX-485_3 30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	27	+12V	ON-OFF	RE
30 CAN_H CAN_L CAN_GND 31 +12V +5V -12V	28	TRX+485_1	TRX+485_2	TRX+485_3
31 +12V +5V -12V	29	TRX-485_1	TRX-485_2	TRX-485_3
	30	CAN_H	CAN_L	CAN_GND
32 MR GND MR	31	+12V	+5V	-12V
	32	MR	GND	MR

Разъемы типа RJ8/8

	Разъем 02В	Разъем 02C	Разъем 02D	Разъем 02E	Разъем 03В	Разъем 03С	Разъем 03D	Разъем 04В
	TEMP AMB	RS485 REC	RS485 BASIC	FAN	TEMP BAT	CAN	RS485 BAT	TEMP SYS
1		+5VP	+5VB	-UB2		CAN_H		
2		GND	GND	MR		CAN_L	GND	
3		TRX-485_1	TRX+485_3	-UB2		CAN_GND	TRX+485_3	
4		TRX+485_1	TRX-485_3	MR			TRX-485_3	
5	AS1+	GND	GND	-UB2	AS2+		GND	AS3+
6	AS1-	+5VP	+5VB	MR	AS2-	CAN_SHLD		AS3-
7			-12VB	VENT		CAN_GND	-12VB	
8			+12VC	MR		CAN_V+	+12VB	

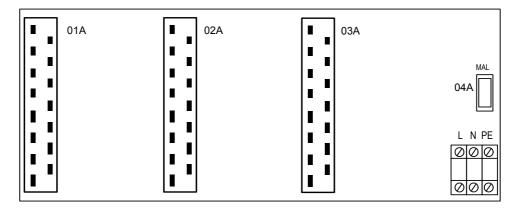
	Разъем 04С	Разъем 04D	Разъем 05В	Разъем 05С	Разъем 05D	Разъем 08A
	ALMIN 1/4	RS485 ADD	HUMIDITY	ALMIN 5/8	IPMI	MAINS TRANS
1	ALARM1			ALARM5	TX2	
2	MR	GND		MR	RX2	GND
3	ALARM2	TRX+485_3	+12VH	ALARM6	GND	SL3
4	MR	TRX-485_3	GND	MR	GND	SL2
5	ALARM3	GND	AS6+	ALARM7	TRX+485_2	SL1
6	MR		AS6-	MR	TRX-485_2	FREQ
7	ALARM4	-12VB		ALARM8		
8	MR	+12VB		MR		

10-контактный разъем для плоского кабеля

	Разъем 03E
	MAL
1	A0F
2	A1F
3	A2F
4	CS4F
5	CS5F
6	AL1F
7	
8	+5VF
9	FGND
10	-5VF

20-контактный разъем для плоского кабеля

	Разъем 04E
	MRD
1	
1 2 3 4 5 6 7	TVC
3	
4	FGND
5	+5VF
6	FGND
7	-5VF
8	A0F
9	A1F
10	A2F
11	CS0F
12	CS1F
13	CS2F
14	
15	AL1F
16	FGND
17	AL2F
18	MER
19	
20	


3-контактный разъем Phoenix

	Разъем 02A	Разъем 03A	Разъем 04А	Разъем 05А	Разъем 10В	Разъем 06A	Разъем 07A
	RELAY 1	RELAY 2	RELAY 3	RELAY 4	ON/OFF	RELAY 5	RELAY 6
1	A1+	A2+	A3+	A4+	MR	A5+	A6+
2	A1P	A2P	A3P	A4P	-UBS	A5P	A6P
3	A1-	A2-	A3-	A4-	ON-OFF	A5-	A6-

10.5. Задняя панель BRM

Задняя панель - это двусторонняя печатная плата высотой 101 мм, длиной 244 мм и толщиной 1,6 мм. На плате находятся три 15-контактых разъема. На правой части панели находится соединительный разъем для соединения аварийных сигналов с контрольным блоком и клеммами для подключения однофазного напряжения 230 В переменного тока. На плате находятся: мультиплексор для объединения аварийных сигналов и два конденсатора для электромагнитной совместимости.

Задняя панель BRM

10.5.1. Описание разъемов

01A – 03A - разъемы DIN41612 (тип H15) для подключения вольтодобавочных конверторов или инверторов

04A
 разъемы для соединения аварийных сигналов с контрольным блоком
 L, N, PE
 клеммы для подключения однофазного напряжения переменного тока

10.5.2. Расположение контактов разъема

Разъемы типа Н15 01А-03А

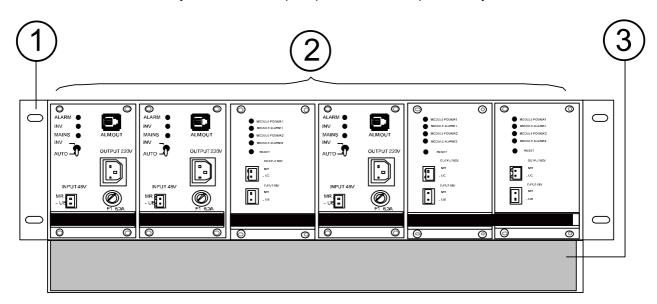
Z04	N
D06	
Z08	L1
D10	
Z12	MR
D14	FGND
Z16	MAL2_11
D18	
Z20	
D22	
Z24	
D26	
Z28	MR
D30	MR
Z32	PE

10-контактный разъем для плоского кабеля

	Разъем 04А
	MAL
1	A0F
2	A1F
3	A2F
4	CS4F
5	CS5F
6	AL1F
7	
8	+5VF
9	FGND
10	-5VF

11. Секция дополнительных преобразователей (MRP)

Секция с дополнительными преобразователями (MRP) обеспечивает подключение до шести преобразователей (модулей):

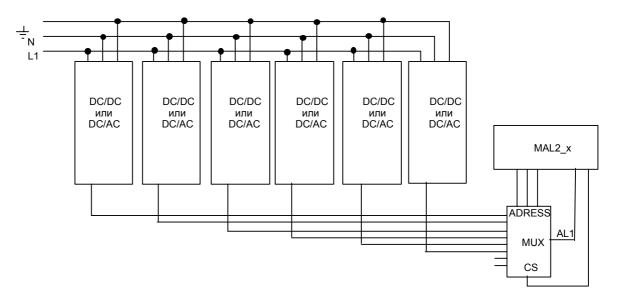

- вольтодобавочные конверторы для питания потребителей 60 В в системе питания 48 В;
- инвертор для выполнения бесперебойного питания потребителей напряжением 220 В.

Секция MRP состоит из:

- механического корпуса;
- крышки;
- задней панели (BRP).

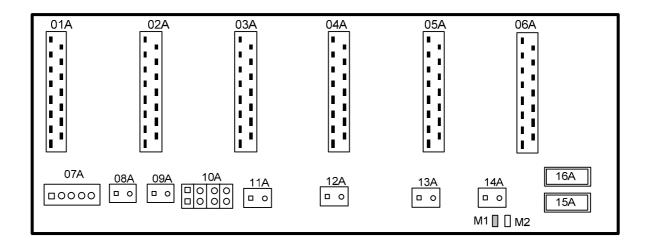
Механическая конструкция изготовлена на базе 19-дюймовой технологии. Высота корпуса составляет 4U (1U = 44,3 мм), а глубина 250 мм. К соединительным шинам, соединяющим боковые стенки корпуса, прикреплены направляющие шины, предназначенные для установки преобразователей в корпусе.

Крышка секции MRP предназначена для покрытия нижней части секции, где находится поле подключений. Позиции без установленных преобразователей покрыты заглушками.



Секция с дополнительными преобразователями (MRP)

- 1 секция MRP с задней панелью (BRP)
- 2 инвертор или вольтодобавочный конвертор
- 3 поле подключений



Задняя панель - это двусторонняя печатная плата высотой 170 мм, длиной 431,6 мм и толщиной 1,6 мм. В верхней части панели припаяно пять 15-контактных силовых разъемов для подключения преобразователей. В нижней части панели реализовано поле подключений, на котором находятся: разъем для подачи сетевого напряжения, разъем для подачи системного напряжения, разъемы для питания преобразователей системным напряжением (лицевая панель преобразователя) и сигнальный разъем для соединения с контрольным блоком. На панели находится схема, обеспечивающая мультиплексное чтение данных по аварийным сигналам и идентификации преобразователей.

MAL2-X Разъем, который служит для индикации аварийных сигналов преобразователей и чтения их идентификатора, ы – это позиционный номер секции MRP

Блок-схема задней панели (BRP)

Передняя сторона задней панели (BRP)

11.1. Описание разъемов и контактов разъема

01A – 06A - разъемы DIN41612 (тип H15) для подключения вольтодобавочных

конверторов или инверторов

07А - разъем для подключения однофазного напряжения переменного тока

08A, 09A, 11A, - разъемы для подачи питания постоянным током вольтодобавочным 12A, 13A, 14A конверторам или инверторам

10А - разъем для подключения питания постоянным током

15А, 16А - разъемы для соединения аварийных сигналов с контрольным блоком

М1, М2
 короткозамыкатели на разъеме для идентификации секции MRP

Внимание!

На задней панели находятся два разъема (М1 и М2), которые предназначены для идентификации секции MRP. Если установлен короткозамыкатель на разъеме М1, то контрольный блок считает, что речь идет осекции MRP1, а если короткозамыкатель установлен на разъеме М2, то речь идет о секции MRP2. Если ни один короткозамыкатель не установлен, контрольный блок не будет контролировать преобразователи в секции MRP. Если установлены оба короткозамыкателя, появляется колизия данных и контроль преобразователей работает неправильно.

Если в секцию MRM встроена задняя панель BRM, которая обеспечиваеть подключение до трех конверторов или инверторов, к системе можно подключить только одну секцию MRP, которая должна иметь установленный короткозамыкатель на разъеме M2. Эту секцию контрольный блок считает секцией MRP2. Преобразователи, установленные в секции MRM, контрольный блок считает преобразователями, установленными в секцию MRP1.

Разъемы типа Н15 01А-06А

Z04	N
D06	
Z08	L1
D10	
Z12	MR
D14	FGND
Z16	MAL2_11
D18	
Z20	
D22	
Z24	
D26	
Z28	MR
D30	MR
Z32	PE

5-контактный разъем

	Разъем 07А
1	PE
2	N
3	
4	
5	L1

2-контактные разъемы

	Разъем 08A	Разъем 09А	Разъем 11А	Разъем 12A	Разъем 13A	Разъем 14A
1	-UB	-UB	-UB	-UB	-UB	-UB
2	MR	MR	MR	MR	MR	MR

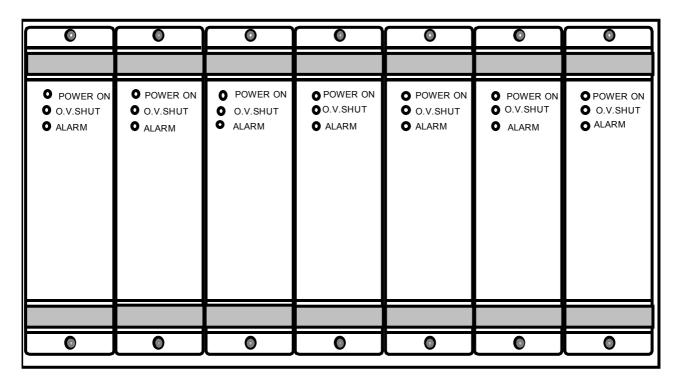
4-контактный разъем

	Разъем 10А
1	-UB
2	-UB
3	MR
4	MR

10-контактный разъем для плоского кабеля

	Разъем 15А, 16А
	MAL
1	A0F
2	A1F
3	A2F
4	CS4F
5	CS5F
6	AL1F
7	
8	+5VF
9	FGND
10	-5VF

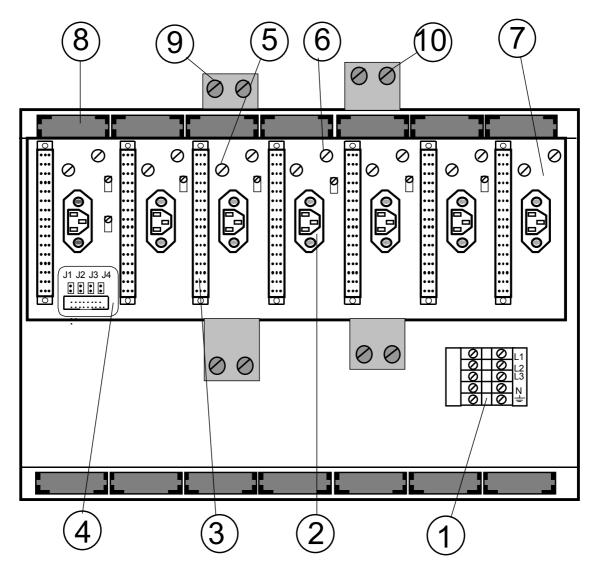
12. Секция выпрямителей


В системе электропитания установлены различные типы выпрямителей, следовательно, и различные секции выпрямителей, в зависимости от выходного напряжения и типа статива.

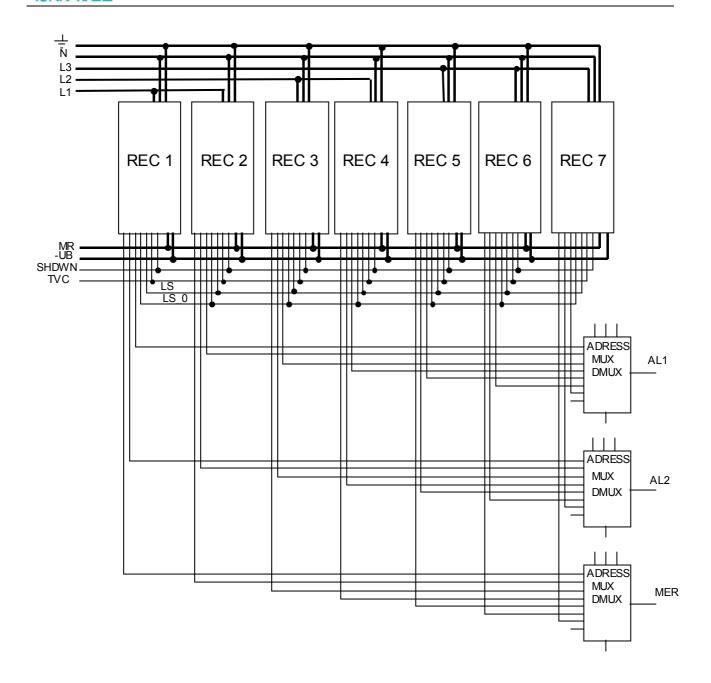
- секция ETS в исполнении на 48 В (секция MRD);
- секция ETS в исполнении на 60 В (секция MRD);
- 19-дюймовая секция в исполнении на 48 В (секция MRQ);
- 19-дюймовая секция в исполнении на 48 В (секция MRR).

12.1. Секция выпрямителей (MRD)

Секция MRD изготовлена в двух вариантах; в исполнении на 48 В и исполнении на 60 В. В одной секции статива можно разместить не более семи выпрямителей 230 В/48 В, 1300 Вт или не более семи выпрямителей 230 В/60 В, 1100 Вт. Секции для выпрямителей на 48 В или на 60 В отличаются между собой в зависимости от значения, установленного потенциометрами, которые находятся на задней панели ВRC.


Секция MRD имеет следующие габаритные размеры: ширину 533 мм, высоту 275 мм и глубину 284 мм. На верхней стороне секции находятся две медные ленты шириной 45 мм для подключения положительного и отрицательного полюсов системного напряжения.

Секция выпрямителей (MRD)


В состав данной секции входят задняя панель BRC (двусторонняя печатная плата с габаритными размерами 495 мм х 130 мм) и разъем для подключения трехфазного переменного тока. На печатной плате припаяно семь силовых разъемов для подключения выходов постоянного тока, семь гнезд (разъемов) для подключения выпрямителей к сетевому напряжению и разъем для подключения к контрольному блоку ARH. На данной панели находится схема, обеспечивающая мультиплексное чтение данных по аварийным сигналам, идентификации и току отдельных выпрямителей.

Секция MRD и задняя панель BRC без выпрямителей

- 1 место подключения трехфазного переменного тока
- 2 гнездо для питания выпрямителей переменным током
- 3 разъем для выходного напряжения постоянного тока и сигнализации выпрямителя
- 4 разъем для взаимосоединения секций и для соединения с контрольным блоком и короткозамыкателями (1-4)
- 5 место подключения отрицательного полюса выходного напряжения
- 6 место подключения положительного полюса выходного напряжения
- 7 задняя панель BRC
- 8 направляющая шина выпрямителя
- 9 медная шина для подключения отрицательного полюса выходного напряжения
- 10 медная шина для подключения положительного полюса выходного напряжения

Блок-схема секции MRD

REC X - выпрямитель

SHDWN - сигнал выключения выпрямителей TVC - сигнал термокомпенсации напряжения

LS, LS 0 - положительный и отрицательный полюсы сигнала деления нагрузки

AL1 - идентификация выпрямителя AL2 - аварийный сигнал выпрямителя

MER - ток выпрямителя

12.1.1. Соединительные разъемы

Выпрямители подключаются к задней панели посредством 48-контактного разъема, а к контрольному блоку посредством 20-проводного плоского кабеля.

	D	В	Z
2	MR	MR	MR
4	MR	MR	MR
6	MR	MR	MR
8	-UB	-UB	-UB
10	-UB	-UB	-UB
12	-UB	-UB	-UB
14	LS	CS	LS_0
16	TVC	POT+	POT-
18	N.C.	N.C.	N.C.
20	N.C.	N.C.	N.C.
22	ALM1	ALM3	ALM2
24	N.C.	N.C.	N.C.
26	N.C.	N.C.	N.C.
28	N.C.	N.C	N.C.
30	N.C.	N.C.	N.C.
32	N.C.	N.C.	N.C.

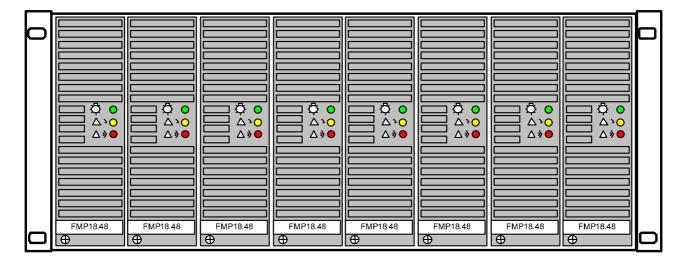
1	N.C
1 2 3 4	TVC
3	SHDWN+
4	GND
5	+5V
5 6 7	GND
7	-5V
8	A1P
9	A2P
10	A3P
11	CS0P
12	CS1P
13	CS2P
14	CS1P CS2P CS3P
15	AL1
16	GND
17	AL2
18	MER
19	LS
20	LS_0

12.1.2. Идентификация секции MRD

На задней панели секции MRD устанавливается короткозамыкатель, с помощью которого определяется позиция секции в системе электропитания:

- короткозамыкатель J1 MRD1;
- короткозамыкатель J2 MRD2;
- короткозамыкатель J3 MRD3;
- короткозамыкатель J4 MRD4.

Если короткозамыкатель не установлен или он установлен в различные секцинав одну и ту же позицию, то чтение аварийного состояния и идентификации выпрямителей в секции невозможны.

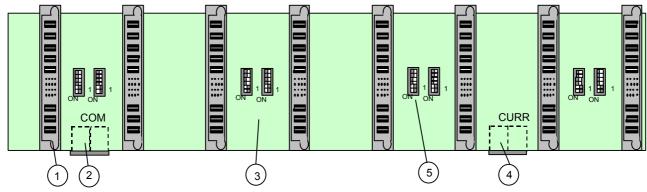

12.1.3. Установка выпрямителей во время работы системы

При установке выпрямителя в секцию во время работы системы ("hot plug in") выпрямитель может перейти в аварийный режим работы. Это происходит, если выпрямитель не был подключен одновременно ко всем контактам разъема на задней панели секции. В таком случае необходимо вынуть выпрямитель и снова его вставить. При установке дополнительного выпрямителя, у которого питание выключено, аварийное состояние не происходит. Через один автоматический выключатель питаются два или три выпрямители.

12.2. Секция выпрямителей (MRQ)

Секция MRQ предназначена для установки максимум восьми процессорно-управляемых выпрямителей 230 B/48 B, 1800 Bт (тип PAH).

Блок высотой 4U, глубиной 400 мм предусмотрен для установки в 19-дюймовый статив. Секция с помощью медных лент подключается к основному блоку распределения постоянного тока (MRN).



Секция выпрямителей (MRQ)

В состав данной секции входят задняя панель BRC (двусторонняя печатная плата) и разъем для подключения трехфазного переменного тока. На печатной плате припаяно восемь силовых разъемов для соединения выходов постоянного тока выпрямителей и сетевого напряжения с выпрямителями, два разъема для соединения с контрольным блоком ARH или соседней секцией MRQ и два разъема для взаимосоединения сигнала для деления нагрузки с соседними секциями MRQ.

12.2.1. Расположение разъемов

- 1 силовой разъем для подключения выпрямителя
- 2 два разъема для соединения с контрольным блоком ARH и со следующей секцией MRQ (RS485)
- 3 задняя панель
- 4 -два разъема для соединения сигнала для деления нагрузки между секциями MRQ
- 5 -мини-выключатель для установки адреса пятого и шестого преобразователя

Внимание!

При подключении кабеля к гнезду COM и CURR нужно быть крайне осторожным. Неправильное подключение кабеля вызывает отказ контрольного блока ARH и выпрямителей.

12.2.2. Расположение контактов разъема

Разъем для подключения выпрямителя РАН

P1	Выход -48 В
P2	Выход -48 В
P3	Выход -48 В (плавный запуск)
P4	Выход +48 В
P5	Выход +48 В
A1	ID4 – адрес позиции
	выпрямителя
B1	ID5 – адрес позиции
	выпрямителя
C1	Сигнал деления нагрузки
D1	0 В для сигнала деления
	нагрузки
A2	ID0 – адрес позиции
	выпрямителя
B2	ID1 – адрес позиции
	выпрямителя
C2	ID2 – адрес позиции
	выпрямителя
D2	ID3 – адрес позиции
	выпрямителя
A3	Не используется
B3	Не используется
C3	Не используется
D3	Общий аварийный сигнал

A4	+5 В, внешнее питание схемы
	для коммуникации RS485
B4	0 В, эталонное значение для
	+5 B
C4	DO/RI, интерфейс RS485
D4	1/ (DO/RI) инвертировано,
	интерфейс RS485
P6	Вход РЕ - АС
P7	Вход N - AC
P8	Вход L - AC

Разъемы для подключения интерфейса RS485 между ARH и MRQ

	COM - PL4	COM - PL6
1	+5VB	+5VB
2	0VB	0VB
3	1/ (DO/RI)	1/ (DO/RI)
4	DO/RI	DO/RI
5	0VB	0VB
6	+5VB	+5VB
7	U	U
8	V	V

Разъемы для соединения сигнала деления нагрузки между MRQ

	CURR - PL3	CURR - PL5
1		
2		
3		
4	CS	CS
5		
6		
7		
8		

12.2.3. Адресация выпрямителей

На задней панели находится восемь мини-выключателей, которые должны быть правильно установлены, чтобы контрольяный блок мог их правильно контролировать. Мини-выключатели обеспечивают 6-битовую адресацию преобразователей, что означает 64 различных адреса. Каждый преобразователь адресуется установкой каждого из шести мини-выключателей в позицию ON или OFF.

Если в различных секциях мини-выключатель установлен в одну и ту же позицию, появляется коллизия между двумя преобразователями с идентичным адресом.

MRQ no. = порядковый номер секции MRQ

Modul = порядковый номер выпрямителя (считая слева направо)

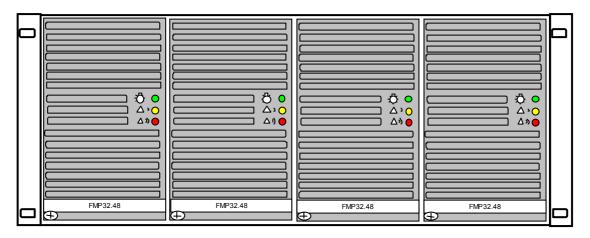
Dip ON = номер мини-выключателя в позиции ON

Поряд-ый	Поряд-ый	Номер мини-
номер MRQ	номер	выключателя в
	AC/DC	ON
1	1	Bce OFF
1	2	1
1	3	2
1	4	1+2
1	5	3
1	6	1+3
1	7	2+3
1	8	1+2+3

12.2.4. Соединение секции MRQ с контрольным блоком ARH

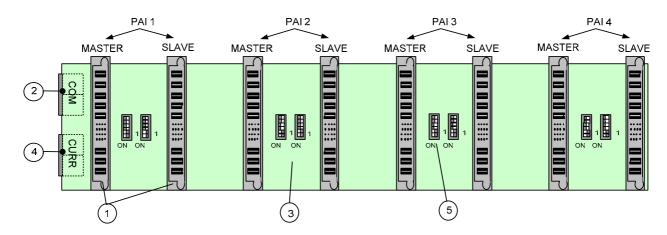
В системе всегда подключена только одна секция MRQ.

12.2.5. Установка выпрямителей во время работы системы


Выпрямитель может быть установлен во время работы системы.

12.3. Секция выпрямителей MRR

Секция выпрямителей типа MRR предназначена для установки до четырех процессорноуправляемых выпрямителей 230 B/48 B, 3200 Bт.

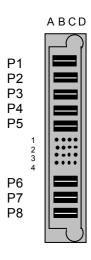

Секция высотой 4U, глубиной 400 мм предусмотрена для установки в 19-дюймовый статив. Секция с помощью медных лент подключается к основному блоку распределения постоянного тока (MRN).

Секция выпрямителей (MRR)

В состав данной секции входят задняя панель (двусторонняя печатная плата) и разъем для подключения трехфазного переменного тока. На печатной плате припаяно восемь силовых разъемов для соединения выходов постоянного тока и сетевого напряжения на четыре выпрямителя, два разъема для соединения с контрольным блоком ARH и соседней секцией MRR и два разъема для взаимосоединения сигнала для деления нагрузки с соседними секциями MRR.

12.3.1. Расположение разъемов

- 1 два силовых разъема для подключения одного выпрямителя
- 2 два разъема для соединения с контрольным блоком ARH и со следующей секцией MRR (RS485)
- 3 задняя панель
- 4 два разъема для соединения сигнала деления нагрузки между секциями MRR
- 5 мини-выключатель для установки адреса третьего преобразователя


Внимание!

При подключении кабеля к гнезду COM и CURR нужно быть крайне осторожным. Неправильное подключение кабеля вызывает отказ контрольного блока ARH и выпрямителей.

12.3.2. Расположение контактов разъема

Разъемы для соединения с выпрямителем РАІ

	1		
	Разъем MASTER	Разъем SLAVE	
P1	Выход -48 В	Выход -48 В	
P2	Выход -48 В	Выход -48 В	
P3	Выход -48 В (плавный запуск)	Выход -48 В (плавный запуск)	
P4	Выход +48 В	Выход +48 В	
P5	Выход +48 В	Выход +48 В	
A1	ID4 – адрес позиции	ID4 – адрес позиции	
	выпрямителя	выпрямителя	
B1	ID5 – адрес позиции	ID5 – адрес позиции	
	выпрямителя	выпрямителя	
C1	Сигнал деления нагрузки	Сигнал деления нагрузки	
D1	0 В для сигнала деления	0 В для сигнала деления	
	нагрузки	нагрузки	
A2	ID0 – адрес позиции	ID0 – адрес позиции	
	выпрямителя	выпрямителя	
B2	ID1 – адрес позиции	ID1 – адрес позиции	
	выпрямителя	выпрямителя	
C2	ID2 – адрес позиции	ID2 – адрес позиции	
	выпрямителя	выпрямителя	
D2	ID3 – адрес позиции	ID3 – адрес позиции	
	выпрямителя	выпрямителя	
A3	Соединение с контактом В3	Не используется	
	разъема Slave		
B3	Не используется	Соединение с контактом А3	
		разъема Master	
C3	Не используется	Соединение с контактом D1	
		разъема Master	
D3	Не используется	Не используется	
A4	+5 В, внешнее питание схемы	+5 В, внешнее питание схемы	
	для коммуникации RS485	для коммуникации RS485	
		0 В, эталонное значение для	
		+5 B	
		DO/RI, интерфейс RS485	
D4	1/ (DO/RI) инвертировано,	1/ (DO/RI) инвертировано,	
	интерфейс RS485	интерфейс RS485	
P6	Вход РЕ - АС	Вход РЕ - АС	
P7	Вход N - AC	Вход N - AC	
P8	Вход L - AC	Вход L - AC	

Разъемы для подключения интерфейса RS485 между ARH и MRR

	COM - PL4	COM - PL6
1	+5VB	+5VB
2	0VB	0VB
3	1/ (DO/RI)	1/ (DO/RI)
4	DO/RI	DO/RI
5	0VB	0VB
6	+5VB	+5VB
7	U	U
8	V	V

Разъемы для соединения сигнала деления нагрузки между MRR

	CURR - PL3	CURR - PL5
1		
2		
3		
4	CS	CS
5		
6		
7		
8		

12.3.3. Адресация выпрямителей

На задней панели находится восемь мини-выключателей, которые должны быть правильно установленными для правильного контроля выпрямителей через контрольный блок ARH. Минивыключатели обеспечивают 6-битовую адресацию выпрямителей, что означает 64 различных адреса. Каждый выпрямитель адресуется установкой каждого из шести мини-выключателей в позицию ON или OFF. Каждый выпрямитель в секции MRR имеет на задней панели два мини-выключателя, которые устанавливаются одним и тем же способом. Выпрямитель PAI состоит из двух частей, работающих как одно целое.

Если в различных секциях мини-выключатель установлен в одну и ту же позицию, появляется коллизия между двумя выпрямителями с идентичным адресом.

MRR no. = порядковый номер секции MRR

Modul = порядковый номер выпрямителя (считая слева направо)

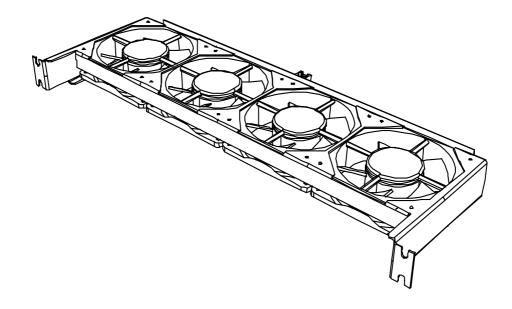
Dip ON = номер мини-выключателя в позиции ON

MRR no.	Modul no.	Dip ON
1	1	Bce OFF
1	2	1
1	3	2
1	4	1+2

12.3.4. Соединение секции MRR с контрольным блоком

12.3.5. Установка выпрямителей во время работы системы

Выпрямитель может быть установлен во время работы системы.



13. Вентиляторный блок (FRD)

Блок состоит из четырех вентиляторов и маленькой платы с двумя схемами для питания и управления этим блоком. Вентиляторный блок управляется контрольным блоком (смотри главу "Управление вентиляторным блоком"). В случае отказа управления вентиляторный блок включается автоматически, если температура превышает 50° С, и отключается при температуре ниже 40° С. Тем самым обеспечены нормальные температурные условия для работы блоков в шкафе. Две схемы, которые находятся на маленькой печатной плате, преобразуют питающее напряжение 48 В или 60 В в 34 В (управление посредством контрольного блока), или в 54 В (управление в зависимости от температуры, регистрирующей датчиком в вентиляторном блоке).

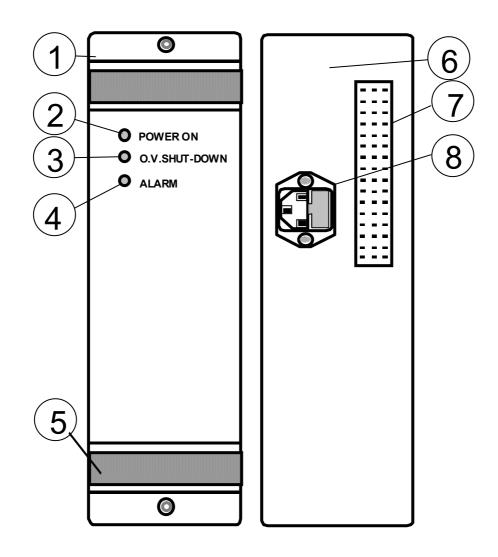
Вентиляторы 1 и 3 питаются от первой схемы, а вентиляторы 2 и 4 от второй схемы. Таким способом обеспечена избыточность путем одного вентиляторного блока, хотя уже два вентилятора гарантируют достаточное охлаждение выпрямителей.

Вентиляторный блок устанавливается в шкафе в случае, когда в наличии имеются две секции выпрямителей (MRD), или другое оборудование, чрезмерно нагревающее окружение выпрямителей.

14. Выпрямитель

14.1. Выпрямитель 230 В перем. тока/48 В пост. тока, 1300 Вт

Выпрямитель (преобразователь AC/DC) - это съемный блок с макс. выходной мощностью 1300 Вт, который преобразует сетевое напряжение 230 В переменного тока в напряжение 48 В постоянного тока. Он приспособлен к параллельной работе. На передней стороне выпрямителя находятся три светодиода: самый верхний светодиод POWER ON обозначает нормальный режим работы выпрямителя, средний светодиод O.V.SHUTDOWN обозначает отключение выпрямителя, нижний светодиод ALARM обозначает низкое напряжение на выходе или неисправность выпрямителя. На лицевой панели выпрямителя имеются отверстия для крепежных винтов и ручка для извлечения выпрямителя. На задней стороне размещен 48-контактный силовой разъем для выходов постоянного тока и входных-выходных сигналов, а также гнездо для подключения напряжения 230 В.


14.1.1. Соединительный разъем

48-контактный силовой разъем предназначен для подключения напряжения постоянного тока и входных-выходных сигнальных проводов к задней панели секции. См. схему разъема!

			7
	D	В	Z
2	MR	MR	MR
4	MR	MR	MR
6	MR	MR	MR
8	-UB	-UB	-UB
10	-UB	-UB	-UB
12	-UB	-UB	-UB
14	LS	CS	LS_0
16	TVC	POT+	POT-
18	N.C.	N.C.	N.C.
20	N.C.	N.C.	N.C.
22	ALM1	ALM3	ALM2
24	N.C.	N.C.	N.C.
26	N.C.	N.C.	N.C.
28	N.C.	N.C	N.C.
30	N.C.	N.C.	N.C.
32	N.C.	N.C.	N.C.

- контакты аварийного реле плавающие;
- в случае неисправности замыкаются контакты аварийных реле ALM3 и ALM1;
- LS_0 связан с -UB.

- 1 передняя сторона выпрямителя
- 2 светодиод для сигнализации о работе выпрямителя
- 3 светодиод для сигнализации о выключении выпрямителя
- 4 светодиод для сигнализации о неисправности выпрямителя
- 5 ручка для извлечения выпрямителя
- 6 задняя панель выпрямителя
- 7 разъем для выходного напряжения постоянного тока и для сигнализации выпрямителя
- 8 разъем для входного напряжения переменного тока

14.1.2. Технические характеристики

Вход

Номинальное напряжение Рабочее напряжение Допустимое напряжение 230 В переменного тока

205 В перем. тока -250 В перем. Тока

187 В перем. тока -276 В перем. тока

При напряжении приблизительно. 280 В перем. тока выпрямители выключаются и автоматически повторно включаются при падении напряжения до приблизительно. 270 В перем. тока. При напряжении в пределах от 150 В до 187 В перем. тока выпрямители работают со сниженной мощностью.

Частотный диапазон от 44 до 66 Гц

≤ 7 А (среднеквадратичное значение) Максимальный входной ток

0,98 при Коэффициент мощности макс. нагрузке и номинальном входном

напряжении

Ток включения макс. 25 (среднеквадратичное

продолжительность макс. 500 мкс при включении в холодном состоянии, макс. 12 А, продолжительность макс. 220 мс при

холодном запуске

Переходная характеристика

в соответствии с ІЕС61000-4-4 уровень 3 в соответствии с ІЕС61000-4-5 уровень 3 переменного тока

Предохранитель медленнодействующий Т10 А Н с высокой мощностью тока

ЕМС - излучение EN 50081-1

ЕМС - помехоустойчивость EN 50082-1, EN 50082-2

IEC-320/C14 Подключение

Выход

1300 Вт при входном напряжении от 187 В до 276 В Максимальная выходная

Мощность переменного тока и выходном напряжении 54,5 В

Номинальное выходное напряжение 46,6 В

Диапазон регулировки выходного

напряжения 0 - нагрузка 100 %

TVC)

Статическая стабильность ±1 % максимальном изменении

напряжения температуры и при входном напряжении

от 44 В до 56 В (с помощью потенциометра или сигнала

(от 187 В до 276 В перем. тока)

Динамическая стабильность

напряжения

 ± 5 % при изменении нагрузки с 10 % на 90 % и обратно, продолжительность пика напряжения составляет макс.

80 мс

Выходной ток от 0 А до 23,9 А при входном напряжении от 187 В до

276 В перем. тока и выходном напряжении 54,5 В

 $27.2 \text{ A} \pm 1 \text{ A}$ при входном напряжении от 187 В до 276 В Максимальный ток

10 A < lout < 28 A

перем. тока и выходном напряжении 45 В

Ток короткого замыкания

Деление нагрузки

< 5 % ОТ максимального тока при параллельно

работающих выпрямителях

Пульсация < 100 мВ от пика к пику, ширина полосы 30 МГц при

входном напряжении (от 187 В до 276 В перем. тока)

Псофометрическое напряжение < 2 мВ (среднеквадратичное значение) при нагрузке в

пределах от 0 % до 100 % и при заряде батарей рекомендациям МСЭ-Т согласно при

напряжении (от 190 В до 276 В переменного тока)

КПД > 91,5 % при макс. нагрузке и номинальном входном

напряжении

Подключение согласно DIN 41612F

Аварийные сигналы

Аварийный сигнал выключения из-за Он генерируется при повышении установленного

перенапряжения

выходногонапряжения выпрямителя на 12 % или если выходной ток выпрямителя при параллельно работающих выпрямителях на 25 % выше среднего

значения или выходное напряжение выше 60 В

Аварийный сигнал низкого

выходного напряжения

Генерируется, если выходное напряжение на 10 % ниже

от установленного выходного напряжения

Окружение

Температура окружения от -25 $^{\circ}$ С до +55 $^{\circ}$ С Температура хранения от -40 $^{\circ}$ С до +85 $^{\circ}$ С

Относительная влажность 20 % - 90 % относительной влажности

Низкочастотный шум < 35 дБА Охлаждение естественное

Вибрации в соответствии с EN 300 19-2-3

Безопасность

Электрическая защита согласно IEC 950, EN 60950, UL 1950 класс 1

Выход SELV согласно определению в IEC 950, EN 60950. Механическая защита с корпусом IP20 согласно

EN50529

Изоляция 4,25 кВ пост. тока, первичные цепи относительно

вторичных

2,12 кВ пост. тока, первичные цепи относительно

корпуса

0,5 кВ пост. тока, вторичные цепи относительно корпуса

Габаритные размеры и вес

Высота261,6 ммГлубина232 ммШирина62 ммВес31 Н

Установка в одну секцию статива - до 7 выпрямителей

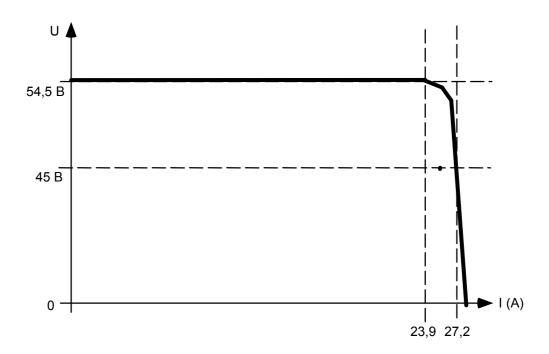
Сигнализация

Светодиод POWER ON сигнализирует работу выпрямителя

Светодиод O.V. SHUTDOWN сигнализирует отключение выпрямителя в результате

срабатывания защиты от перенапряжения

Светодиод ALARM сигнализирует низкое выходное напряжение


выпрямителя

Реле ALARM выпрямитель имеет контакт с гальванической развязкой

для внешней сигнализации общих аварийных сигналов

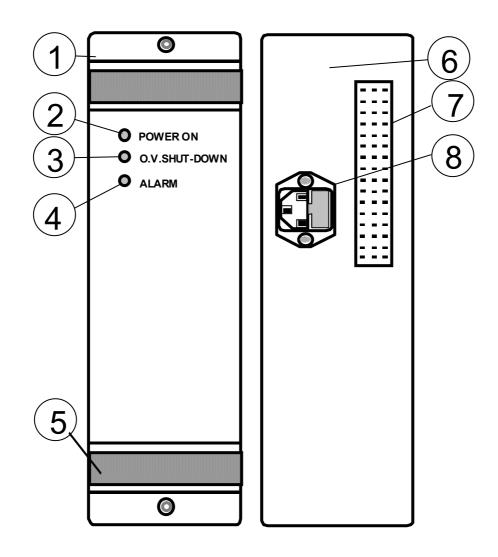
14.1.3. Вольтамперная характеристика выпрямителя

14.1.4. Зависимость выходного напряжения U_{OUT} от напряжения U_{TVC}

I	Utvc	Uout		
I	0.00	42.70		60 ¬
ı	2.44	49.04		58 -
ı	3.56	52.04		
ı	4.72	55.02		56 -
ı	6.00	58.43		54 -
ı	0.00	00110		52 -
			Uout	50 -
			S	
				48 -
				46 -
				44 -
				TT /

14.2. Выпрямитель 230 В перем. тока/60 В пост. тока, 1100 Вт

Выпрямитель - это съемный блок с выходной мощностью 1100 Вт. Он преобразует сетевое напряжение 230 В переменного тока в напряжение 60 В постоянного тока. Он приспособлен к параллельной работе. На передней стороне выпрямителя находятся три светодиода: самый верхний светодиод "POWER ON" обозначает нормальный режим работы выпрямителя, средний светодиод "O.V.SHUTDOWN" обозначает отключение выпрямителя, нижний светодиод "ALARM" обозначает низкое напряжение на выходе или неисправность выпрямителя. На лицевой панели выпрямителя имеются отверстия для крепежных винтов и ручка для извлечения выпрямителя. На задней стороне выпрямителя размещен 48-контактный силовой разъем для выхода постоянного тока и входных-выходных сигналов, а также гнездо для подключения напряжения 230 В перем. тока.


14.2.1. Соединительный разъем

48-контактный силовой разъем предназначен для подключения напряжения постоянного тока и входных-выходных сигнальных проводов к задней панели секции. См. схему разъема!

	D	В	Z
2	MR	MR	MR
4	MR	MR	MR
6	MR	MR	MR
8	-UB	-UB	-UB
10	-UB	-UB	-UB
12	-UB	-UB	-UB
14	LS	CS	LS_0
16	TVC	POT+	POT-
18	N.C.	N.C.	N.C.
20	N.C.	N.C.	N.C.
22	ALM1	ALM3	ALM2
24	N.C.	N.C.	N.C.
26	N.C.	N.C.	N.C.
28	SHDWN -	SHDWN+	N.C.
30	N.C.	N.C.	N.C.
32	N.C.	N.C.	N.C.

- контакты аварийного реле плавающие;
- в случае неисправности замыкаются контакты аварийных реле ALM3 и ALM1;
- LS_0 и SHDWN связаны с -UB

- 1 передняя сторона выпрямителя
- 2 светодиод для сигнализации о работе выпрямителя
- 3 светодиод для сигнализации о выключении выпрямителя
- 4 светодиод для сигнализации о неисправности выпрямителя
- 5 ручка для извлечения выпрямителя
- 6 задняя сторона выпрямителя
- 7 разъем для выходного напряжения постоянного тока и для сигнализации выпрямителя
- 8 разъем для входного напряжения переменного тока

14.2.2. Технические характеристики

Вход

230 В переменного тока Номинальное напряжение

Рабочее напряжение 195 В перем. тока -253 В перем. тока

Допустимое напряжение от 172 В до 276 В перем. тока (до 300 В перем. тока не

более 10 минут, при напряжении приблизительно 300 В перем. тока выпрямители выключаются, а при возвращении сетевого напряжения в допустимые пределы - приблизительно 275 В выпрямитель должен

автоматически включиться)

Частотный диапазон от 44 до 66 Гц

Максимальный входной ток ≤ 7 А (среднеквадратичное значение), синусоидальный

входной ток согласно IEC555

> 0,98 при макс. нагрузке и номинальном входном Коэффициент мощности

напряжении

Ток включения макс. 25 Α (среднеквадратичное значение),

продолжительность макс. 500 мкс при холодном запуске

Переходная характеристика согласно EN61000-4-5

переменного тока

Предохранитель 8 А, медленнодействующий

в соответствии с EN 55022 класс В ЕМС - излучение

ЕМС - помехоустойчивость в соответствии с EN 50082-1. EN 50082-2

Подключение IEC-320/C14

Выход

Максимальная выходная мощность

1100 Вт при рабочем входном напряжении (от 195 В до 253 В переменного тока)

Номинальное выходное напряжение 58,6 В

Диапазон регулировки выходного

напряжения 0-100 % нагрузки

от 55 В до 73 В (с помощью потенциометра или сигнала

TVC)

Статическая стабильность

напряжения

±1 % максимальном изменении

температуры и при рабочем входном напряжении (от

195 В до 253 В перем. тока)

Динамическая стабильность

напряжения

 ± 5 % при изменении нагрузки с 10 % на 90 % и

обратно, продолжительность пика напряжения

составляет макс. 80 мс

0 - 16,2 AВыходной ток

Ограничение по току 19 A ±1 A при рабочем входном напряжении (от 195 В

до 253 В переменного тока) 5 < lout < 19 A

Ток короткого замыкания

Деление нагрузки

< обычно 5 % от максимального тока при параллельно

работающих выпрямителях - до 7 выпрямителей

< 100 мВ от пика к пику, ширина полосы 30 МГц при Пульсация

рабочем входном напряжении (от 195 В до 253 В перем.

тока)

Псофометрическое напряжение

< 2 мВ (среднеквадратичное значение) при нагрузке в пределах от 0 % до 100 % и при заряде батарей

согласно рекомендациям МСЭ-Т при рабочем входном напряжении (от 195 В до 253 В перем. тока)

КПД > 90 % при макс. нагрузке и номинальном входном

напряжении

Подключение согласно DIN 41612F

Аварийные сигналы

Аварийный сигнал выключения

из-за перенапряжения

при повышении установленного выходного напряжения

выпрямителя на 10 %, или если выходной ток выпрямителя при параллельно работающих

выпрямителях на 25 % выше среднего

Аварийный сигнал низкого выходного напряжения

выходное напряжение на 10 % ниже от установленног

о выходного напряжения

Окружение

Температура окружения от -25° C до +55° C Температура хранения от -40° C до +85° C

Относительная влажность 20 % - 90 % относительной влажности

Низкочастотный шум < 35 дБА Охлаждение естественное Вибрация согласно IEC 68-2-6

Транспортировка согласно ІЕС 68-2-27 и 68-2-29

Безопасность

Электрическая защита согласно IEC 950, EN 60950, UL 1950 класс 1

Выход не является выходом SELV согласно

определению в IEC 950, EN 60950.

Механическая защита с корпусом согласно IP20.

Изоляция 4,25 кВ пост. тока, первичные цепи относительно

вторичных

2,12 кВ пост. тока, первичные цепи относительно

корпуса

1 кВ пост. тока, вторичные цепи относительно корпуса

Габаритные размеры и вес

 Высота
 261,6 мм

 Глубина
 232 мм

 Ширина
 62 мм

Bec 31 H

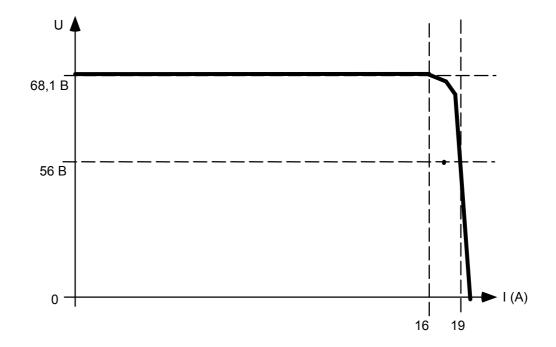
Установка в одну секцию статива - до 7 выпрямителей

Сигнализация

Светодиод POWER ON сигнализирует работу выпрямителя

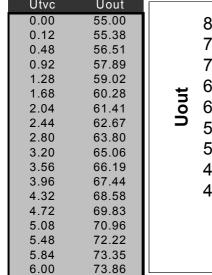
Светодиод O.V. SHUTDOWN сигнализирует отключение выпрямителя в результате

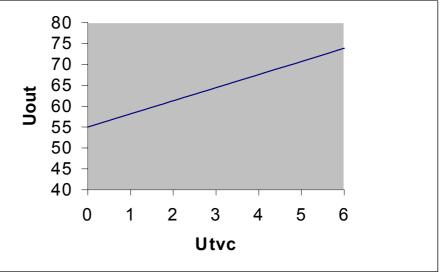
срабатывания защиты от перенапряжения

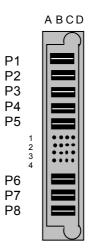

Светодиод ALARM сигнализирует низкое выходное напряжение

выпрямителя

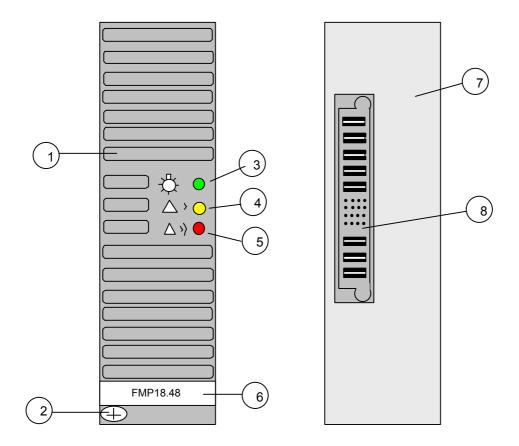
Реле ALARM выпрямитель имеет контакт с гальванической развязкой


для внешней сигнализации общих аварийных сигналов


14.2.3. Вольтамперная характеристика выпрямителя


14.3. Выпрямитель 230 В перем. тока/48 В пост. тока, 1800 Вт

Выпрямитель - это съемный блок с выходной мощностью 1800 Вт. Он преобразует сетевое напряжение 230 В переменного тока в напряжение 48 В постоянного тока. Он приспособлен к параллельной работе. На передней стороне выпрямителя находятся три светодиода. Верхний зеленый светодиод сигнализирует работу выпрямителя. Средний желтый светодиод сигнализирует о том, что выпрямитель находится в режиме перегрузки или он выключен из-за высокой температуры; мигание этого светодиода означает отсутствие коммуникации с контрольным блоком. Нижний красный светодиод сигнализирует о неисправности выпрямителя или выключении выпрямителя из-за высокого выходного напряжения. На лицевой панели выпрямителя имеется отверстие для крепежного винта и ручка для извлечения выпрямителя. На задней стороне выпрямителя размещен силовой разъем для выхода постоянного тока и входных-выходных сигналов, а также гнездо для подключения напряжения 230 В перем. тока.



14.3.1. Соединительный разъем

P1	Выход -48 В	
P2	Выход -48 В	
P3	Выход -48 В (плавный запуск)	
P4	Выход +48 В	
P5	Выход +48 В	
A1	ID4 – адрес позиции	
	выпрямителя	
B1	ID5 – адрес позиции	
	выпрямителя	
C1	Сигнал деления нагрузки	
D1	0 В для сигнала деления	
	нагрузки	
A2	ID0 – адрес позиции	
	выпрямителя	
B2	ID1 – адрес позиции	
	выпрямителя	
C2	ID2 – адрес позиции	
	выпрямителя	
D2	ID3 – адрес позиции	
	выпрямителя	
A3	Не используется	
B3	Не используется	
C3	Не используется	
D3	Общий аварийный сигнал	
A4	+5 В, внешнее питание схема	
	для коммуникации RS485	
B4	0 В, эталонное значение для	
	+5 B	
C4	DO/RI, интерфейс RS485	
D4	1/ (DO/RI) инвертировано,	
	интерфейс RS485	
P6	РЕ - вход АС	
P7	N - вход АС	
P8	L - вход АС	

- 1 передняя сторона выпрямителя
- 2 крепежный винт
- 3 светодиод для сигнализации о работе выпрямителя
- 4 светодиоды индикации работы в режиме перегрузки или в случае высокой температуры
- 5 светодиод для сигнализации о неисправности выпрямителя
- 6 ручка для извлечения выпрямителя
- 7 задняя сторона выпрямителя
- 8 разъем для переменного входного напряжения, постоянного выходного напряжения и сигнализации

14.3.2. Технические характеристики

Вход		
Номинальное	230 В переменного тока	
напряжение		
Рабочее напряжение	100 В перем. тока -250 В	
	перем. тока	
Допустимое	95 В перем. тока -275 В перем.	При напряжении приблизительно 310 В
напряжение	тока	перем. тока выпрямители выключаются и
		автоматически повторно включаются при
		падении напряжения до приблизительно
		300 В перем. тока. При напряжении в
		пределах от 95 В до 190 В перем. тока
		выпрямители работают со сниженной
		мощностью.
Частотный диапазон	от 44 до 66 Гц	

Максимальный ≤ 11,5 А (среднеквадратичное

входной ток значение)

Коэффициент > 0,98 в соответствии с IEC 02.03.6100

мощности

Ток включения 13 А (среднеквадратичное продолжительность макс. 1 мс при

значение) холодном запуске

Переходная согласно EN61000-4-5

характеристика переменного тока

Предохранитель 2 х 12,5 А фазный и нулевой проводники,

быстродействующий

ЕМС в соответствии с EN61000-6-1,

EN61000-6-2, EN61000-6-3, FCC часть 15, класс В

Выход		
Максимальная	1800 Вт	– при входном напряжении > 190 В перем.
выходная мощность		тока
	750 Вт	при входном напряжении от 90 – 190 В перем. тока
Номинальное выходное напряжение	53,5 B	
Диапазон настройки	44 B -56 B	путем управления микроконтроллером
Статическая	1 %	при максимальном изменении нагрузки,
стабильность		температуры и входного напряжения
напряжения		
Динамическая	±5 %	при изменении нагрузки с 10 % на 90 % и
стабильность		обратно, продолжительность пика
напряжения		напряжения составляет макс. 50 мс
Выходной ток	от 0 до 33 А при напряжении	– при входном напряжении > 190 В перем.
	54,5 B	тока
	от 0 до 14,5 A при напряжении 54,5 B	при входном напряжении от 90 -190 В перем. тока
Ограничение по току	38 A ±1 A при напряжении 45	при входном напряжении > 190 В перем.
,	В	тока
Ток короткого	$40~\text{A}\pm5~\text{A}$	– при входном напряжении > 190 В перем.
замыкания		тока
Деление нагрузки	< 5 %	
Пульсация	< 100 мВ от пика к пику	ширина полосы 30 МГц при входном напряжении от 195 В до 253 В перем. тока
Псофометрическое	< 2 мВ (среднеквадр.	при нагрузке в пределах от 0 % до 100 % и
напряжение	значение)	при заряде батарей согласно
		рекомендациям МСЭ-Т при рабочем
		входном напряжении (от 195 В до 253 В
		перем. тока)
кпд	> 93 %	при нагрузке 60 — 100 % нагрузке и номинальном входном напряжении
Подключение	FCI 51939-066	·

Аварийные сигналы Высокое выходное напряжение - выключение выпрямителя, красный

светодиод

Низкое выходное напряжение - неисправность выпрямителя, красный

светодиод

Защита в случае короткого замыкания на выходе выпрямителя

Автоматическое ограничение выходного тока (желтый светодиод)

Выборочное выключение выпрямителя при высоком выходном напряжении (красный светодиод)

Термическая защита, ограничивающая выходной ток при высокой температуры окружения и выключение выпрямителя при температуре > 75° С с автоматическим повторным включением (желтый светодиод) Выключение при высоком входном напряжении > 210 В перем. тока с автоматическим повторным включением при напряжении < 300 В перем.

тока.

Сигнализация Зеленый светодиод - сигнализирует о работе выпрямителя

Желтый светодиод – сигнализирует о низком выходном напряжении выпрямителя, о работе выпрямителя в режиме перегрузки и о его работе

из-за высокой температуры (ограничение выходной мощности).

Красный светодиод сигнализирует о неисправности выпрямителя или его

выключении из-за высокого выходного напряжения.

Электрическая защита согласно IEC 950, EN 60950, UL 1950 класс -2 950 класс 1 согласно IEC

950 класс 1

Изоляция 4,25 кВ пост. тока, первичные цепи относительно вторичных

и относительно корпуса

0,75 кВ пост. тока, вторичные цепи относительно корпуса

Защита мех. IP20

конструкции

Температура работы от -40° C до +65° C до 2000 м

от -40° C до +55° C до 2000 м

Температура хранения от -60° C до +85° C

Относительная 20 % -80 % относительной влажности

влажность

Низкочастотный шум < 60 дБА

Охлаждение вентиляторное охлаждение (воздух спереди входит, сзади выходит),

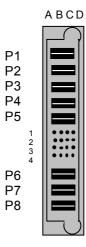
контролируемая скорость вентиляторов и их работа

Хранениесогласно ETS 300 019-2-1Транспортировкасогласно ETS 300 019-2-2Работасогласно ETS 300 019-2-3Землятресениесогласно GR 63 Core Zone 4

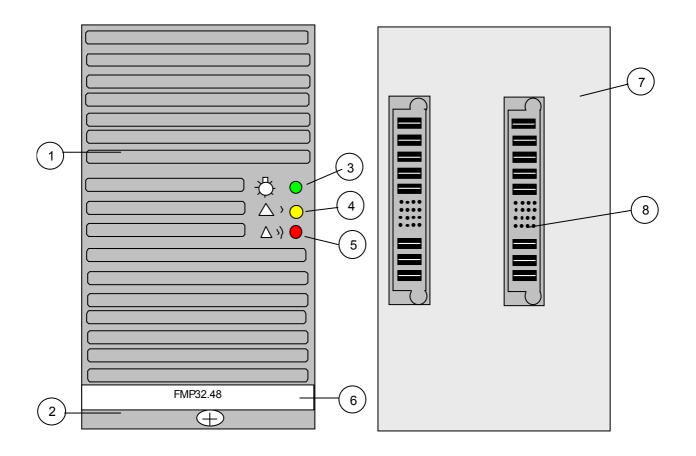
Габаритные размеры и Высота - 177 мм вес Глубина - 280 мм

Ширина – 51 мм Вес – 22 Н:

Установка Секция с выпрямителями типа MRQ


14.4. Выпрямитель 230 В перем. тока/48 В пост. тока, 3200 Вт (РАІ)

Выпрямитель - это съемный блок с выходной мощностью 3200 Вт. Он преобразует сетевое напряжение 230 В переменного тока в напряжение 48 В постоянного тока. Он приспособлен к параллельной работе. На передней стороне выпрямителя находятся три светодиода. Верхний зеленый светодиод сигнализирует работу выпрямителя Средний желтый светодиод сигнализирует о том, что выпрямитель находится в режиме перегрузки или он выключен из-за высокой температуры; мигание этого светодиода означает отсутствие коммуникации с контрольным блоком. Нижний красный светодиод сигнализирует о неисправности выпрямителя или выключении выпрямителя из-за высокого выходного напряжения. На лицевой панели выпрямителя имеется отверстие для крепежного винта и ручка для извлечения выпрямителя. На задней стороне выпрямителя размещены два силовых разъема для выхода постоянного тока и входных-выходных сигналов, а также гнездо для подключения напряжения 230 В перем. тока.



14.4.1. Соединительные разъемы

	T	- o	
	Разъем MASTER	Разъем SLAVE	
P1	Выход -48 В	Выход -48 В	
P2	Выход -48 В	Выход -48 В	
P3	Выход -48 В (плавный запуск)	Выход -48 В (плавный запуск)	
P4	Выход +48 В	Выход +48 В	
P5	Выход +48 В	вВыход +48 В	
A1	ID4 – адрес позиции	ID4 – адрес позиции	
	выпрямителя	выпрямителя	
B1	ID5 – адрес позиции	ID5 – адрес позиции	
	выпрямителя	выпрямителя	
C1	Сигнал деления нагрузки	Сигнал деления нагрузки	
D1	0 В для сигнала деления	0 В для сигнала деления	
	нагрузки	нагрузки	
A2	ID0 – адрес позиции	ID0 – адрес позиции	
	выпрямителя	выпрямителя	
B2	ID1 – адрес позиции	ID1 – адрес позиции	
	выпрямителя	выпрямителя	
C2	ID2 – адрес позиции	ID2 – адрес позиции	
	выпрямителя	выпрямителя	
D2	ID3 – адрес позиции	ID3 – адрес позиции	
	выпрямителя	выпрямителя	
A3	соединение с контактом В3	Не используется	
	разъема Slave		
B3	Не используется	Соединение с контактом А3	
		разъема Master	
C3	Не используется	Соединение с контактом D1	
		разъема Master	
D3	Не используется	Не используется	
A4	+5 В, внешнее питание схемы	+5 В, внешнее питание схемы	
	для коммуникации RS485	для коммуникации RS485	
B4	0 В, эталонное значение для	0 В, эталонное значение для	
	+5 B	+5 B	
C4	DO/RI, интерфейс RS485	DO/RI, интерфейс RS485	
D4	1/ (DO/RI) инвертировано,	1/ (DO/RI) инвертировано,	
	интерфейс RS485	интерфейс RS485	
P6	РЕ - вход АС	РЕ - вход АС	
P7	N - вход АС	N - вход АС	
P8	L - вход АС	L - вход АС	
	·	· · · · · · · · · · · · · · · · · · ·	

- 1 передняя сторона выпрямителя
- 2 крепежный винт
- 3 светодиод для сигнализации о работе выпрямителя
- 4 светодиоды индикации работы выпрямителя в режиме перегрузки или в случае выключения выпрямителя из-за высокой температуры
- 5 светодиод для сигнализации о неисправности выпрямителя
- 6 ручка для извлечения выпрямителя
- 7 задняя сторона выпрямителя
- 8 разъем для входного напряжения переменного тока, выходного напряжения постоянного тока и сигнализации

14.4.2. Технические характеристики

Вход			

Номинальное 230 В переменного тока

напряжение

Рабочее напряжение 100 В перем. тока -250 В

перем. тока

Допустимое 85 В перем. тока -275 В перем.

напряжение тока

При напряжении приблизительно 275 В перем. тока выпрямители выключаются и автоматически повторно включаются при падении напряжения до приблизительно 260 В перем. тока. При напряжении в пределах от 95 В до 190 В перем. тока выпрямители работают со сниженной мощностью.

Частотный диапазон от 44 до 66 Гц

Максимальный ≤ 2 x 10 A (среднеквадр.

 входной ток
 значение)

 Коэффициент
 > 0,98

мощности

Ток включения 2 х 13 А (среднеквадр. продолжительность макс. 1 мс при

значение) холодном запуске

в соответствии с ІЕС 02.03.6100

Переходная согласно EN61000-4-5

характеристика переменного тока

Предохранитель 4 х 12,5 А фазный и нулевой проводники,

быстродействующий

ЕМС в соответствии с EN61000-6-1,

EN61000-6-2, EN61000-6-3,

FCC часть 15, класс B

Подключение FCI 51939-066

Выход		
Максимальная выходная мощность	3200 Вт	 – при входном напряжении > 190 В перем. тока
	1300 Вт	при входном напряжении от 90 -190 В перем. тока
Номинальное выходное напряжение	53,5 B	·
Диапазон настройки	44 B -56 B	путем управления микроконтроллером
Статическая	1 %	при максимальном изменении нагрузки
стабильность		температуры и входного напряжения
напряжения		
Динамическая	±5 %	при изменении нагрузки с 10 % на 90 % и
стабильность		обратно, продолжительность пика
напряжения		напряжения составляет макс. 50 мс
Выходной ток	от 0 до 58,8 А при	– при входном напряжении > 190 В перем
	напряжении 54,5 В	тока
	от 0 до 27,5 А при	при входном напряжении от 90 -190 Е
	напряжении 54,5 В	перем. тока
Ограничение по току	63 A ±1 А при напряжении	– при входном напряжении > 190 В перем
	45 B	тока
Ток короткого	75 A ± 5 A	– при входном напряжении > 190 В перем
замыкания		тока
Деление нагрузки	< 5 %	
Пульсация	< 100 мВ от пика к пику	ширина полосы 30 МГц при входном напряжении от 195 В до 253 В перем. тока
Псофометрическое	< 2 мВ (среднеквадр.	при нагрузке в пределах от 0 % до 100 % і
напряжение	значение)	при заряде батарей согласно рекомендациям МСЭ-Т при рабочем входном напряжении (от 195 В до 253 В перем. тока)
кпд	> 93 %	при нагрузке 60 – 100 % нагрузке и номинальном входном напряжении
Подключение	FCI 51939-066	•

Аварийные сигналы Высокое выходное напряжение - выключение выпрямителя, красный

светодиод

Низкое выходное напряжение – неисправность выпрямителя, красный

светодиод

Защита Защита в случае короткого замыкания на выходе выпрямителя

> Автоматическое ограничение выходного тока (желтый

светодиод)

Выборочное выключение выпрямителя при высоком выходном

напряжении (красный светодиод)

Термическая защита, ограничивающая выходной ток при высокой температуры окружения и выключение выпрямителя при температуре > 75° С с автоматическим повторным включением (желтый светодиод) Выключение при высоком входном напряжении > 275 В перем. тока с автоматическим повторным включением при напряжении < 260 В перем.

тока.

Зеленый светодиод - сигнализирует о работе выпрямителя Сигнализация

> Желтый светодиод – сигнализирует о низком выходном напряжении выпрямителя, о работе выпрямителя в режиме перегрузки и высокой

температуры (ограничение выходной мощности).

Красный светодиод сигнализирует о неисправности выпрямителя или его

выключении из-за высокого выходного напряжения.

согласно IEC 950, EN 60950, UL 1950 класс -2 950 класс 1 согласно IEC Электрическая защита

950 класс 1

IP20

Изоляция 4,25 кВ пост. тока, первичные цепи относительно вторичных

> 2,12 кВ пост. тока, первичные цепи относительно корпуса 0,75 кВ пост. тока, вторичные цепи относительно корпуса

Защита мех.

конструкции

Температура работы от -40° C до +65° C до 2000 м

от -40° C до +55° C до 2000 м

от -60° С до +85° С Температура хранения

20 % -80 % относительной влажности Относительная

влажность

Низкочастотный шум < 60 дБА

Охлаждение вентиляторное охлаждение (воздух спереди входит, сзади выходит),

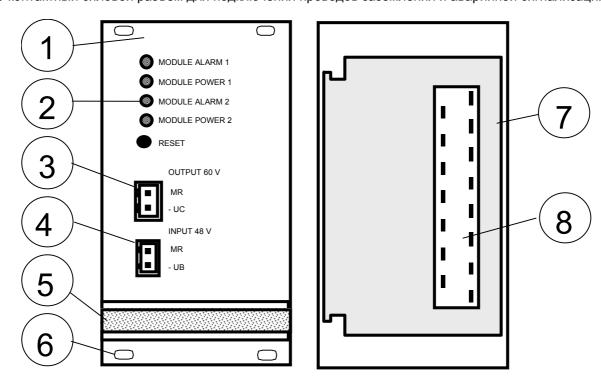
контролируемая скорость вентиляторов и их работа

Хранение согласно ETS 300 019-2-1 Транспортировка согласно ETS 300 019-2-2 Работа согласно ETS 300 019-2-3 Землятресение согласно GR 63 Core Zone 4

Габаритные размеры и Высота - 177 мм вес

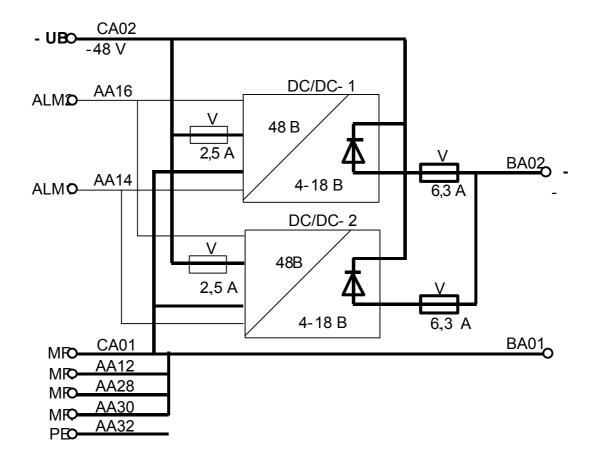
Глубина - 280 мм

Ширина - 105 мм


Bec - 22 H:

Установка Секция MRR

15. Вольтодобавочный конвертор


Вольтодобавочный конвертор (преобразователь DC/DC) – это съемный блок с выходной мощностью 2 х 100 Вт, который добавляет напряжение (от 4 до 18 В) системному напряжению (от 42 В до 56 В). пока на его выходе не получается напряжение 60 В. В одном корпусе находятся два конвертора, которые работают параллельно. Тем самым обеспечен 100 % резерв. На лицевой панели вольтодобавочного конвертора находятся четыре светодиода. Первый (MODULE ALARM 1) и третий светодиоды (MODULE ALARM 2), считая сверху вниз - красного цвета, и сигнализируют низкое напряжение на выходе или неисправность на первом или втором конверторе. Второй (MODULE POWER 1) и четвертый светодиоды (MODULE POWER 2), считая сверху вниз - зеленые светодиоды, и сигнализируют функционирование первого и второго вольтодобавочных конверторов. Под светодиодами находится кнопка RESET, которая служит для сброса вольтодобавочного конвертора, который из-за критически высокого напряжения на выходе перешел в состояние блокировки, когда ни один светодиод не горит. На передней стороне конвертора размещены разъемы для входного напряжения 48 В и для выходного напряжения 60 В, отверстия для крепления лицевой панели и ручка извлечения конвертора. На задней стороне конвертора 15-контактный силовой разъем для подключения проводов заземления и аварийной сигнализации.

Вольтодобавочный конвертор

- 1 лицевая панель вольтодобавочного конвертора
- 2 светодиоды индикации работы и неисправности конвертора, кнопка RESET
- 3 разъем В для выходного напряжения 60 В
- 4 разъем С входного напряжения 48 В
- 5 ручка для извлечения инвертора
- 6 крепежный винт
- 7 задняя панель вольтодобавочного конвертора
- 8 15-контактный разъем А на задней панели

Блок-схема вольтодобавочного конвертора

DC/DC-1 - вольтодобавочный конвертор 1

DC/DC-2 - вольтодобавочный конвертор 2

MR – земля MR или положительный полюс батареи или выпрямителей

РЕ - соединительная клемма заземляющего проводника

-UB - соединительная клемма выпрямителей (отрицательный полюс)

-UC - выходная соединительная клемма -60 B

V - плавкий предохранитель

ALM1, 2 - контакты аварийного реле

15.1. Функции вольтодобавочного конвертора

- Фильтрация входного системного напряжения -UB и ограничение тока включения при запуске;
- Генерирование выходного питающего напряжения -60 В (-UC);
- Ограничение выходного тока вольтодобавочного конвертора;
- Ограничение входного тока батареи при коротком замыкании на выходе вольтодобавочного конвертора;
- Ограничение выходного напряжения вольтодобавочного конвертора;
- Ограничение выходного напряжения вольтодобавочного конвертора при выходе без нагрузки;
- Оптическая сигнализация состояния вольтодобавочного конвертора;
- Генерирование и передача аварийного сигнала выходному разъему.

15.2. Процедура в случае короткого замыкания на выходе вольтодобавочного конвертора

В случае появления короткого замыкания на выходе вольтодобавочного конвертора автоматически активизируется схема, которая ограничивает входной ток и выключает системное напряжение. Повторное включение вольтодобавочного конвертора выполняется с помощью следующей процедуры:

- выключение системного напряжения (снятием питающего кабеля с разъема С на передней стороне данного конвертора);
- устранение короткого замыкания;
- повторное включение системного напряжения (подключением питающего кабеля к разъему С на передней стороне конвертора).

Примечание!

Включение системного напряжения при коротком замыкании на выходе не разрешается!

15.3. Технические характеристики

Вход

Рабочее напряжение 42 В -56,4 В Допустимое 40 В -60 В

напряжение

112

Ток макс. 2,5 А

Псофометрическое < 2 мВ при нагрузке от 0 % до 100 % и при заряде

напряжение батареи

Пульсация < 200 мВ от пика к пику,

ширина полосы 20 МГц

Выход		
Номинальное выходное напряжение	60 B	устанавливается потенциометром
Напряжение конвертора	0 B - 20 B	
 Выходной ток	2 x 5 A	
Ограничение по току	2 x > 5 A и < 6 A	конвертор не должен выходить из строя при коротком замыкании
Статическая стабильность напряжения	1 %	при максимальном изменении нагрузки, температуры и входного напряжения
Динамическая стабильность напряжения	±4 %	при изменении нагрузки 50 % ±10 %, время продолжительности пикового напряжения - макс. 100 мс
Деление нагрузки	< 20 %	между двумя вольтодобавочными конверторами
Пульсация Псофометрическое напряжение Излучение радиопомех КПД	< 200 мВ от пика к пику < 2 мВ (среднеквадр. значение) CISPR класс В > 85 %	ширина полосы 20 МГц при нагрузке от 0 % до 100 % выход пост. тока при макс. нагрузке

Безопасность согласно IEC 950 класс 1

Защита автоматическое ограничение тока на выходе

плавкие предохранители на входе (5 x 20) F 2,5 A плавкие предохранители на выходе (5 x 20) F 6,3 A

Изоляция усиленная изоляция, испытанная при:

0,5 кВ пост. тока, вход - земля 0,5 кВ пост. тока, выход - земля

Защита мех. ІР20

конструкции

Низкочастотный шум < 35 дБА

Температура окружения от 0° C до $+50^{\circ}$ C Температура хранения от -40° C до $+70^{\circ}$ C Относительная от 5° % до 90° %

влажность

Охлаждение естественное Вибрация согласно IEC 68-2-6

Транспортировка согласно ІЕС 68-2-27 и 68-2-29

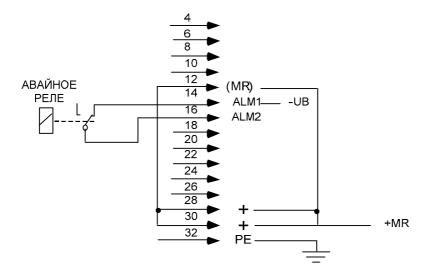
Габаритные размеры 70,8 мм х 128,5 мм х 232 мм (ширина х высота х глубина)

Вес не более 14,5 Н

Установка в 19-дюймовую секцию

Срок службы > 20 лет при температуре окр. среды 25° C, мощности 50 Вт и при

выходном напряжении 60 В



15.4. Соединительные клеммы

15.4.1. Разъем А, тип Н15

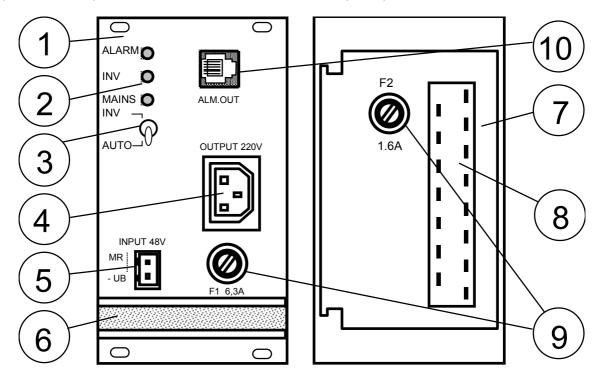
Разъем смонтирован на задней стороне вольтодобавочного конвертора и используется для соединения конвертора с задней панелью. Контакты аварийных реле ALM1 и ALM2 являются плавающими. Нормально замкнутые контакты означают неисправность инвертора. Неиспользуемые контакты зарезервированы и их не разрешается использовать в других целях!

04	
06	
80	
10	
12	MR
14	ALM1
16	ALM2
18	
20	
22	
24	
26	
28	MR
30	MR
32	PE

15.4.2. Разъем В

Разъем В - это 2-контактный разъем на передней стороне вольтодобавочного конвертора, который используется для питания потребителей 60 В.

	ı
01	MR
02	-UC

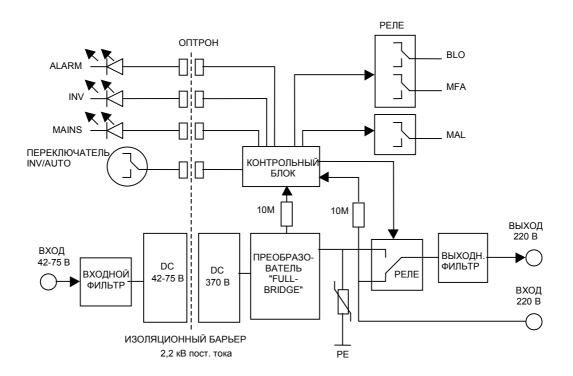

15.4.3. Разъем С

Разъем С - это 2-контактный разъем на передней стороне вольтодобавочного конвертора, который используется для его питания.

01	MR
02	-UB

16. Инвертор

Инвертор (преобразователь DC/AC) - это съемный блок с выходной мощностью 200 Вт/250 ВА. Инвертор преобразует системное напряжение (от 42 В до 75 В пост. тока) в напряжение 220 В перем. тока. На передней стороне инвертора находятся три светодиода. Верхний красный светодиод ALARM сигнализирует низкое напряжение на выходе или неисправность инвертора. Средний зеленый светодиод INV сигнализирует работу инвертора. Нижний зеленый светодиод MAINS сигнализирует наличие сетевого напряжения и неработу инвертора. Под светодиодами находится переключатель INV/AUTO, с помощью которого выбирается режим работы инвертора. На передней стороне блока находятся разъем входного напряжения 48 В и гнездо напряжения перем. тока 220 В, отверстия для крепления блока и ручка для извлечения блока. На задней панели инвертора находится 15-контактный силовой разъем для подключения проводов заземления, проводов входного сетевого напряжения и аварийной сигнализации, а также входной предохранитель.



Инвертор

- 1 лицевая панель инвертора
- 2 светодиоды для индикации работы и неисправности инвертора
- 3 переключатель режима работы
- 4 разъем В выходного напряжения 220 В
- 5 разъем С входного напряжения 48 В

- 6 ручка для извлечения инвертора
- 7 задняя панель инвертора
- 8 15-контактный разъем А на задней панели
- 9 плавкие предохранители F1 и F2
- 10 разъем аварийной сигнализации D RJ6

Блок-схема инвертора

16.1. Описание работы инвертора

Инвертор преобразует входное системное напряжение 48 В пост. тока/60 В пост. тока в выходное напряжение 220 В перем. тока.

Если переключатель на лицевой панели инвертора находится в положение AUTO, то инвертор постоянно работает, но при нормальном сетевом напряжении элемент нагрузки питается от сети через контакты реле RE1. При отказе электросети или при отклонении сетевого напряжения за допустимые пределы реле RE1 в течение < 20 мс переключает элемент нагрузки на выход инвертора, принимающий на себя питание нагрузки.

После возвращения сетевого напряжения в допустимые пределы реле RE1 переключает элемент нагрузки на сетевое напряжение.

Если переключатель на лицевой панели инвертора находится в положении INV, то инвертор работает в автоматическом режиме (постоянно) и элемент нагрузки питается от инвертора через контакты реле RE1, независимо от сетевого напряжения.

16.2. Процедура в случае отказа инвертора при перегрузке

В случае перегрузки на выходе инвертора на период более 5 с автоматически срабатывает схема, выключающая инвертор. Повторное включение инвертора выполняется согласно следующей процедуре:

- отключить системное напряжение (извлечь питающий кабель);
- устранить перегрузку;
- повторно подключить системное напряжение (подсоединить питающий кабель).

16.3. Технические характеристики инвертора

Вход пост. тока

Рабочее напряжение от 44 B до 70,5 B Допустимое от 40 B до 75 B

напряжение

Ток макс. 6,5 A Ток включения макс. 20 A

Вход перем. тока

Рабочее напряжение 220 В

Допустимое от 187 В до 260 В

напряжение

_			
R	 	_	_
п	ıx		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Номинальное выходное 220 В переменного тока при переключении на инвертор

напряжение

Допустимое выходное от 210 В до 230 В при переключении на инвертор

напряжение

Выходной ток макс. 1,5 А

Частота 50 Гц $\pm 0,1$ % контролируется кварцевым генератором Коэффициент макс. 3 % THD (total harmonic при линейной нагрузке от 0 % до 100 %

искажения distortion – суммарный

коэффициент гармоник)

Мощность 250 ВА, 200 Вт

Деление нагрузки < 20 % между двумя вольтодобавочными

конверторами

Перегрузка 10 % за 5 с

Переключение из 230 В < 25 мс

на выход инвертора

КПД > 75 % при макс. нагрузке

Безопасность согласно IEC 950 класс 1

Защита автоматическое ограничение тока на выходе инвертора

плавкий предохранитель на входе перем. тока (5 х 20) 1,6 А,

медленнодействующий

плавкий предохранитель на входе пост. тока (5 х 20) 6.3 А. медленнодействующий

если включена функция AUTO

Изоляция усиленная изоляция, испытанная при:

вход пост. тока - выход перем. тока; 2,2 кВ пост. тока вход пост. тока - вход перем. тока; 2,2 кВ пост. тока

вход перем. тока или выход перем. тока – РЕ; 2,2 кВ пост. тока

вход пост. тока (положит. полюс) всегда заземлен

Аварийные сигналы неисправность инвертора

входное напряжение 220 В перем. тока вне допустимых пределов (U <

187 В перем.тока или U > 260 В перем.тока);

низкое входное напряжение батареи (U < 44 B ± 1 %) низкое выходное напряжение инвертора < 177 B

Излучение радипомех согласно CISPR класс В, измерено в направлении батареи, сети и

потребителя

Защита мех. ІР20

конструкции

Низкочастотный шум < 45 дБА

Температура окружения от 0° С до $+50^{\circ}$ С Температура хранения от -40° С до $+70^{\circ}$ С Относительная от 5° % до 90° %

влажность

Охлаждение естественное/принудительное

Вибрация согласно ІЕС 68-2-6

Транспортировка согласно ІЕС 68-2-27 и 68-2-29

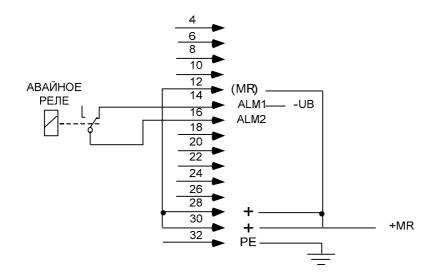
Габаритные размеры 70,8 мм х 128,5 мм х 232 мм (ширина х высота х глубина)

Вес не более 18,5 Н

Установка в 19-дюймовую секцию

Срок службы > 20 лет при темп. окружения 25° С, мощности 100 Вт и при выходном

напряжении 220 В


16.4. Соединительные клеммы

16.4.1. Разъем А, тип Н15

Разъем находится на задней стороне инвертора и служит для подключения инвертора к задней панели секции. Контакты аварийных реле ALM1 и ALM2 являются плавающими. Нормально замкнутые контакты означают неисправность инвертора. Контакты 4 и 8 предназначены для подключения сетевого напряжения 220 В. Неиспользованные контакты являются резервом и их использование в других целях не допускается!

04	N
06	
80	L
10	
12	MR
14	ALM1
16	ALM2
18	
20	
22	
24	
26	
28	MR
30	MR
32	PE

16.4.2. Разъем В

Это инверсное гнездо, встроенное на передней стороне инвертора, которое используется для выходного напряжения 220 В.

16.4.3. Разъем С

Это 2-контактное гнездо на передней панели инвертора и используется для питания инвертора.

01	MR
02	-UB

16.4.4. Разъем D

Разъем предстваляет собой 6-контактное гнездо RJ и предназначен для соединения с терминалом для сигнализации пропадания сетевого напряжения и низкого напряжения батарей.

01	BLO
02	MFA
03	SGND
04	N.C.
05	N.C.
06	N.C.

17. Аккумуляторные батареи

Аккумуляторные батареи состоят из аккумуляторов, а аккумуляторы – из различного числа 2-вольтовых аккумуляторных элементов. В системе используются аккумуляторные батареи 48 В или 60 В и обеспечивается подключение герметизированных и классических аккумуляторных батарей.

В случае пропадания сетевого напряжения 220 В питание телефонной станции принимают на себя аккумуляторные батареи.

Если сигнализация "критически низкое напряжение батарей" не зарегистрирована, то реле LVD отключает аккумуляторные батареи при напряжении ниже -42 B \pm 0,5 B в системе 48 B и при напряжении ниже -52,5 B \pm 0,5 B в системе 60 B. Тем самым батареи защищены от глубокого разряда. Если после возвращения сетевого напряжения, напряжение системы увеличится за пределы допустимого напряжения -50 B в системе 48 B или -62,5 B в системе 60 B, то система электропитания MPS автоматически включает реле LVD и тем самым аккумуляторные батареи.

Аккумуляторные батареи ни в коем случае не должны разряжаться ниже критического предела (-42 В для системы 48 В и -52,5 В для системы 60 В)!

17.1. Ускоренный заряд классических аккумуляторных батарей

Система MPS обеспечивает автоматический ускоренный заряд аккумуляторных батарей напряжением не более 2,35 В/элемент.

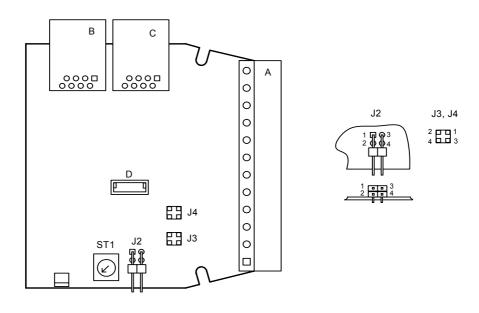
18. Блок измерения напряжения аккумуляторов батареи (ARI)

Система MPS позволяет измерять напряжения аккумуляторов макс. 16 аккумуляторных батарей контролируемой системы электропитания. Каждая аккумуляторная батарея состоит из макс. восьми аккумуляторов, а каждый аккумулятор из различного количество аккумуляторных элементов по 2 В, 4 В, 6 В или 12 В. Контролируемые аккумуляторные батареи могут быть герметизированными или классическими. Для измерения напряжения аккумуляторов предназначен блок ARI.

Блок ARI обеспечивает измерение напряжения макс. 8 аккумуляторов, которые входят в состав аккумуляторной батареи, с точностью 1 %. Максимальное напряжение каждого аккумулятора составляет 17 В. Способ подключения блока ARI к аккумуляторной батарее зависит от напряжения отдельного аккумулятора (смотри схему подключения блока ARI к аккумуляторным батареям данного раздела). Блок ARI всегда находится радом с аккумуляторной батареей. На блоке находится кодирующий переключатель, с помощью которого устанавливается порядковый номер измерямой аккумуляторной батареи (0 – F или 1 – 16).

Блок ARI питается от напряжения, обеспечиваемого контрольным блоком системы MPS. На блоке находится микроконтроллер, обеспечивающий коммуникацию с контрольным блоком ARH через протокол RS485. Данный блок встроен в пластмассовом корпусе, обесепечивающем крепление к напрявляющей шине.

Блок ARI состоит из:


- платы VRN и
- пластмассового корпуса.

18.1. Функции блока ARI

Блок ARI выполняет следующие функции:

- периодическое измерение напряжения восьми аккумуляторов;
- коммуникация с контрольным блоком ARH,
 - передача данных о напряжении аккумуляторов по запросу процессора на блоке ARH.

Светодиод на блоке ARL служит индикатором работы микроконтроллера.

Плата VRN

18.2. Описание разъемов

- 12-контактный разъем для подключения к аккумуляторам
- B разъем для подключения к RS485
- С разъем для подключения к RS485
- D разъем для подключения к порту компьютера RS232

18.3. Описание короткозамыкателей, предохранителей и кодирующего переключателя

- J2 Установка резистора-терминатора интерфейса RS485:
 - короткозамыкатель на контактах 1-3 терминирует интерфейс RS485 с 121 Ом.
- Установка режима работы микроконтроллера:
 - короткозамыкатель на контактах 1-2 обеспечивает загрузку ПО через интерфейс RS232 (заводская установка).
- J4 Перезагрузка микроконтроллера:
 - короткозамыкатель на контактах 1-2 обеспечивает перезагрузку во время загрузки ПО через интерфейс RS232 (заводская установка);
 - короткозамыкатель на контактах 1-3 осуществляет перезагрузку микроконтроллера.
- V1 Плавкий мини-предохранитель F0,75 A для защиты вспомогательного питания +12 B платы VRN.
- ST1 Позиция кодирущего переключателя определяет порядковый номер блока ARI от 1 до 16. Смотри таблицу!

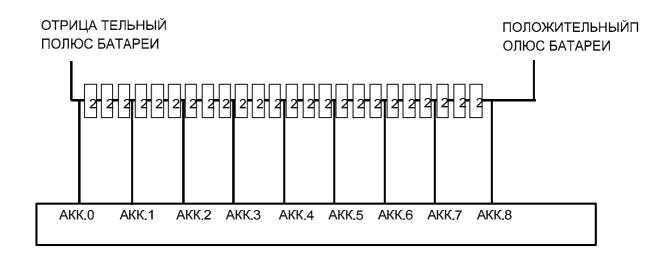
Внимание!

Установку короткозамыкателей и замену предохранителей может выполнять только уполномоченный специалист по сервисному обслуживанию.

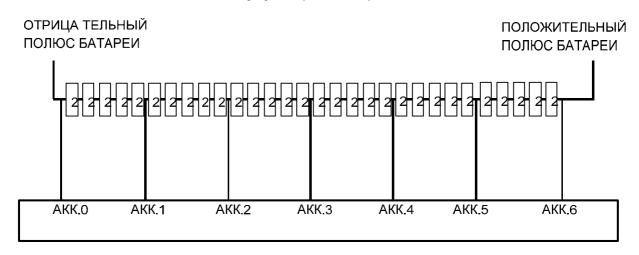
ST1	ARI
0	1
1	2
2	3
3	4
4	5
5	6
6	7
7	8
8	9
9	10
Α	11
В	12
С	13
D	14
Ε	15
F	16

18.4. Расположение контактов разъема

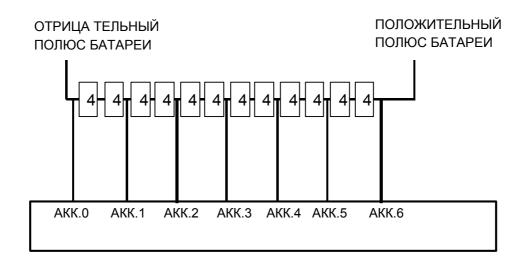
Разъемы типа RJ8/8

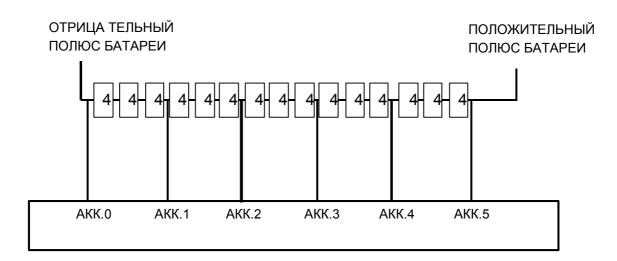

	Разъем В	Разъем С
1	+5V	+5V
2	GND	GND
3	TRX+485	TRX+485
4	TRX-485	TRX-485
5	GND	GND
6	+5V	+5V
7	-12V	-12V
8	+12V	+12V

12-контактный разъем

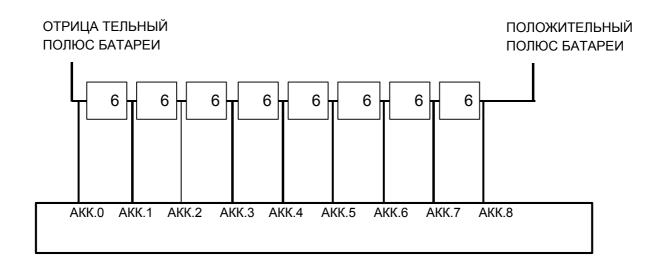

	Разъем А
1	АККУМ.0
2	АККУМ.1
3	АККУМ.2
4	АККУМ.3
5	АККУМ.4
6	АККУМ.5
7	АККУМ.6
8	АККУМ.7
9	АККУМ.8
10	
11	
12	

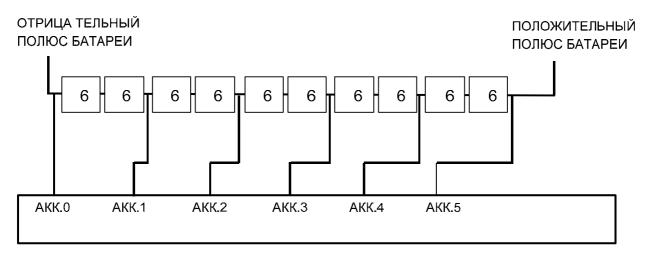
18.5. Подключение аккумуляторной батареи с аккумуляторами 2 В


Аккумуляторная батарея 48 В

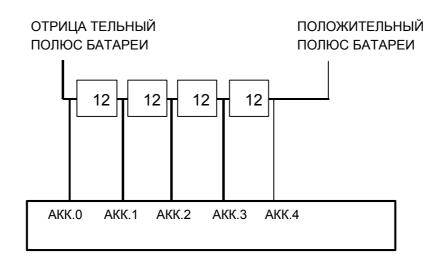

Аккумуляторная батарея 60 В

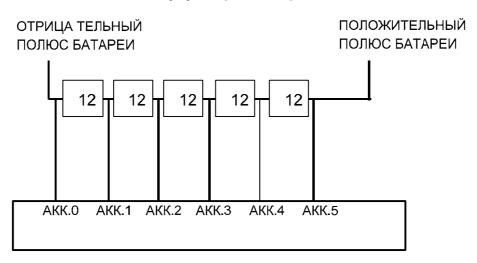
18.6. Подключение аккумуляторной батареи с аккумуляторами 4 В


Аккумуляторная батарея 48 В


Аккумуляторная батарея 60 В

18.7. Подключение аккумуляторной батареи с аккумуляторами 6 В


Аккумуляторная батарея 48 В


Аккумуляторная батарея 60 В

18.8. Подключение аккумуляторной батареи с аккумуляторами 12 В

Аккумуляторная батарея 48 В

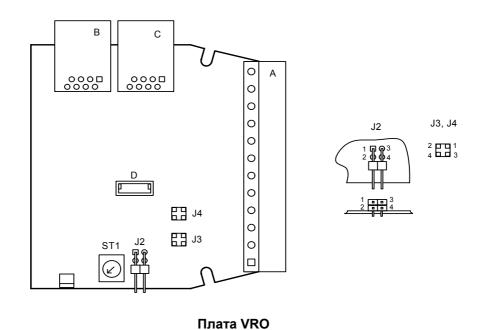
Аккумуляторная батарея 60 В

19. Блок управления реле (ARJ)

Система MPS позволяет подключить четыре блока ARJ. На каждом блоке ARJ находятся четыре реле, которые предназначены для управления внешними устройствами или работают в качестве аварийных реле. Контакты реле защищены элементом РТС сопротивлением 125 Ом при температуре 25° С.

Блок ARI питается от напряжения, обеспечиваемого контрольным блоком системы электропитания. На блоке находится микроконтроллер, устанавливающий соединение с контрольным блоком ARH через протокол RS485. Данный блок встроен в пластмассовом корпусе, обесепечивающем крепление к напрявляющей шине. В случае пропадания соединения с контрольным блоком реле остаются в состоянии, в котором они находились до пропадания коммуникации. Перезагрузка микроконтроллера не влияет на состояние реле.

Блок ARJ состоит из:


- платы VRO и
- пластмассового корпуса.

19.1. Функции блока ARJ

Блок ARJ выполняет следующие функции:

- управление четырьмя реле;
- коммуникация с контрольным блоком ARH,
 - регистрация запросов на срабатывание(включение) отпускание (выключение) реле, коммуникация только по запросу процессора блока ARH.

Светодиод на блоке ARL служит индикатором работы микроконтроллера.

19.2. Описание разъемов

А - 12-контактный разъем для подключения к контактам реле

В - разъем для подключения к интерфейсу RS485

C - разъем для подключения к интерфейсу RS485

D - разъем для подключения к порту компьютера RS232

19.3. Описание короткозамыкателей, предохранителей и кодирующего переключателя

- J2 Установка резистора-терминатора интерфейса RS485:
 - короткозамыкатель на контактах 1-3 терминирует интерфейс RS485 с 121 Ом.
- J3 Установка режима работы микроконтроллера:
 - короткозамыкатель на контактах 1-2 обеспечивает загрузку ПО через интерфейс RS232 (заводская установка).

В нормальном режиме работы приложения короткозамыкатель должен быть установлен на контакты 3-4.

- J4 Перезагрузка микроконтроллера:
 - короткозамыкатель на контактах 1-2 обеспечивает перезагрузку во время загрузки ПО через интерфейс RS232 (заводская установка);
 - короткозамыкатель на контактах 1-3 осуществляет перезагрузку микроконтроллера.

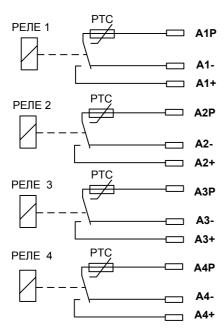
В нормальном режиме работы короткозамыкатель должен быть установлен на контакты 3-4.

- V1 Плавкий мини-предохранитель F0,75 A для защиты вспомогательного питания +12 B платы VRO.
- ST1 Позицию кодирующего переключателя определяет порядковый номер блока ARJ (от 1 до
 4). Контрольный блок осуществляет коммуникацию только с блоками ARJ, у которых кодирующий переключатель установлен в позицию от 0 до 3. Смотри таблицу!

ST1	AR،
0	1
1	2
2	3
3	4

Внимание!

Установку короткозамыкателей и замену предохранителей может выполнять только уполномоченный специалист по сервисному обслуживанию.


19.4. Расположение контактов разъема

Разъемы типа RJ8/8

	Разъем В	Разъем С			
1	+5V	+5V			
2	GND	GND			
3	TRX+485	TRX+485			
4	TRX-485	TRX-485			
5	GND	GND			
6	+5V	+5V			
7	-12V	-12V			
8	+12V	+12V			

12-контактный разъем

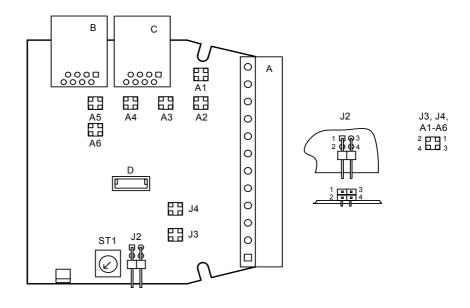
	Разъем А
1	A1+
2	A1-
3	A1P
4	A2+
5	A2-
6	A2P
7	A3+
8	A3-
9	A3P
10	A4+
11	A4-
12	A4P

20. Блок сбора аварийных сигналов (ARK)

Система MPS позволяет подключить четыре блока ARK. Каждый блок ARK имеет шесть аварийных входов. На блоке находится восемь короткозамыкателей, с помощью которых устанавливается схема обнаружения аварийных сигналов. Если коротокозамыкатель находится в позиции 1-2, аварийный сигнал инициирует соединение контакта ALMx с MR. Если короткозамыкатель находится в позиции 2-3, аварийный сигнал инициирует соединение контакта ALMx с -UB (заводская установка).

Блок ARK питается от напряжения, обеспечиваемого контрольным блоком системы электропитания. На блоке находится микроконтроллер, устанавливающий соединение с контрольным блоком ARH через протокол RS485. Данный блок встроен в пластмассовом корпусе, обесепечивающем крепление к напрявляющей шине.

Блок ARK состоит из:


- платы VRP и
- пластмассового корпуса.

20.1. Функции ARK

Блок ARG выполняет следующие функции:

- контроль шести аварийных входов,
- коммуникация с контрольным блоком ARH,
 - передача данных об аварийных входах по запросу процессора на блоке ARH.

Светодиод на блоке ARL служит индикатором работы микроконтроллера.

Плата VRP

20.2. Описание разъемов

А - 12-контактный разъем для подключения к аварийным входам

В - разъем для подключения к RS485 С - разъем для подключения к RS485

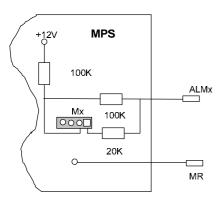
D - разъем для подключения к порту компьютера RS232

20.3. Описание короткозамыкателей, предохранителей и кодирующего переключателя

A1, A2, A3, A4, A5, A6	 Установка типа аварийного сигнала (смотри приведенный ниже рисунок): короткозамыкатель на контактах 1-2, сигнал на MR означает аварийное состояние; короткозамыкатель на контактах 3-4, сигнал на -UB означает аварийное
J2	состояние Установка резистора-терминатора интерфейса RS485: - короткозамыкатель на контактах 1-3 терминирует интерфейс RS485 с 121 Ом.
J3	 Установка режима работы микроконтроллера: короткозамыкатель на контактах 1-2 обеспечивает загрузку ПО через интерфейс RS232 (заводская установка). В нормальном режиме работы приложения короткозамыкатель должен быть
J4	установлен на контакты 3-4. - Перезагрузка микроконтроллера: - короткозамыкатель на контактах 1-2 обеспечивает перезагрузку во время загрузки ПО через интерфейс RS232 (заводская установка); - короткозамыкатель на контактах 1-3 осуществляет перезагрузку микроконтроллера. В нормальном режиме работы короткозамыкатель должен быть установлен на контакты 3-4.
V1	- плавкий мини-предохранитель F0,75 A для защиты вспомогательного питания +12 B платы VRP.
ST1	- Позиция кодирующего переключателя определяет порядковый номер блока ARK (от 1 до 4). Контрольный блок ARH устанавливаеть соединение только с блоками ARK, у которых кодирующий переключатель установлен в позицию от 0 до 3. Смотри таблицу!
ST1 0 1 2 3	ARK 1 2 3 4

Внимание!

Установку короткозамыкателей и замену предохранителей может выполнять только уполномоченный специалист по сервисному обслуживанию.


20.4. Расположение контактов разъема

Разъемы типа RJ8/8

	Разъем В	Разъем С			
1	1,5 B	+5V			
2	GND	GND			
3	TRX+485	TRX+485			
4	TRX-485	TRX-485			
5	GND	GND			
6	+5V	+5V			
7	-12V	-12V			
8	1,5 B	+12V			

12-контактный разъем

12 Kemakmen pace				
	Разъем			
	Α			
1	ALM1			
2	MR			
3	ALM2			
4	MR			
5	ALM3			
6	MR			
7	ALM4			
8	MR			
9	ALM5			
10	MR			
11	ALM6			
12	MR			

21. Блок измерения напряжения постоянного тока (ARL)

Система MPS позволяет подключить восемь блоков ARL для измерения напражения постоянного тока. Данный блок обеспечивает дифференциальное измерение двух напряжений постоянного тока.

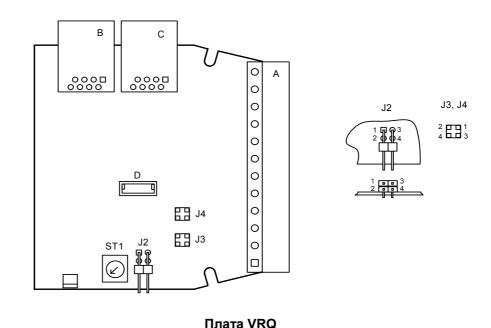
Блок ARL питается от напряжения, обеспечиваемого контрольным блоком системы электропитания. На блоке находится микроконтроллер, устанавливающий соединение с контрольным блоком ARH через протокол RS485. Данный блок встроен в пластмассовом корпусе, обесепечивающем крепление к напрявляющей шине.

Микроконтроллер автоматически устанавливает оптимальную область измерения (изменяется усиление операционного усилителя), а данные об области измерения и измеренном значении сообщает контрольному блоку ARH. Контрольный блок расчитывает значение и выводит это значение на терминале управления. Контрольный блок на основании измеренного значения может генерировать аварийный сигнал, который устанавливает пользователь через терминал управления.

Блок ARL состоит из:

- платы VRQ и
- пластмассового корпуса.

21.1. Функции блока ARL


Блок ARLAA выполняет следующие функции:

- периодическое дифференциальное измерение двух напряжений постоянного тока с макс. значением ±100 В на землю MR системы электропитания MPS,
- коммуникация с контрольным блоком ARH,
- передача данных об измеренном напряжении и области измерения по запросу процессора на блоке ARH.

Блок ARLAB выполняет следующие функции:

- периодическое дифференциальное измерение двух напряжений постоянного тока с макс. значением ±3 В на землю MR системы электропитания MPS,
- коммуникация с контрольным блоком ARH,
- передача данных об измеренном напряжении и области измерения по запросу процессора на блоке ARH.

Светодиод на блоке ARL служит индикатором работы микроконтроллера.

21.2. Описание разъемов

- А 12-контактный разъем для подключения к входам измерения
- В разъем для подключения к интерфейсу RS485
- С разъем для подключения к интерфейсу RS485
- D разъем для подключения к порту компьютера RS232

21.3. Описание короткозамыкателей, предохранителей и кодирующего переключателя

- J2 Установка резистора-терминатора интерфейса RS485:
 - короткозамыкатель на контактах 1-3 терминирует интерфейс RS485 с 121 Ом.
- Установка режима работы микроконтроллера:
 - короткозамыкатель на контактах 1-2 обеспечивает загрузку ПО через интерфейс RS232 (заводская установка).
 - В нормальном режиме работы приложения короткозамыкатель должен быть установлен на контакты 3-4.
- J4 Перезагрузка микроконтроллера:
 - короткозамыкатель на контактах 1-2 обеспечивает перезагрузку во время загрузки ПО через интерфейс RS232 (заводская установка);
 - короткозамыкатель на контактах 1-3 осуществляет перезагрузку микроконтроллера.
 - В нормальном режиме работы короткозамыкатель должен быть установлен на контакты 3-4.
- V1 Плавкий мини-предохранитель F0,75 A для защиты вспомогательного питания +12 B платы VRQ.

ST1

- Позицию кодирующего переключателя определяет порядковый номер блока ARL (от 1 до 8). Контрольный блок устанавливаеть связь только с блоками ARL, у которых кодирующий переключатель установлен в позицию от 0 до 7. Смотри таблицу!

Внимание!

Установку короткозамыкателей и замену предохранителей может выполнять только уполномоченный специалист по сервисному обслуживанию.

ST1	ARL
0	1
1	2
2	3
3	4
4	5
5	6
6	7
7	8

21.4. Расположение контактов разъема

Разъемы типа RJ8/8

	Разъем В	Разъем С		
1	+5V	+5V		
2	GND	GND		
3	TRX+485	TRX+485		
4	TRX-485	TRX-485		
5	GND	GND		
6	+5V	+5V		
7	-12V	-12V		
8	+12V	+12V		

12-контактный разъем

	Разъем А
1	AN1+
2	AN1-
3	AN2+
4	AN2-
5	
6	
7	
8	
9	
10	
11	
12	

22. Функции контрольного блока

Контрольный блок предназначен для контроля и управления системой MPS и ее окружения. Для этого в контрольном блоке реализованы следующие функции:

Конфигурация системы:

- конфигурация типа системы электропитания;
- конфигурация преобразователей;
- конфигурация блоков ARG;
- конфигурация блоков ARM;
- конфигурация предохранителей и автоматических выключателей;
- конфигурация блоков измерения напряжения аккумуляторов ARI;
- конфигурация блоков ARJ, ARK, ARL.

Основные функции:

- регулировка системного напряжения;
- выключение аккумуляторной батареи или нагрузки при низком напряжении;
- выключение аккумуляторной батареи или нагрузки при высокой температуре.

Измерительные функции:

- измерение системного напряжения
- измерение сетевого напряжения;
- измерение тока;
- расчет и отображение мощности системы;
- измерение тока определенных выпрямителей;
- измерение напряжения аккумуляторов:
- измерение напряжения на блоках измерения постоянного напряжения;
- измерение температуры;
- измерение влажности;
- измерение емкости батарей.

Функции управления:

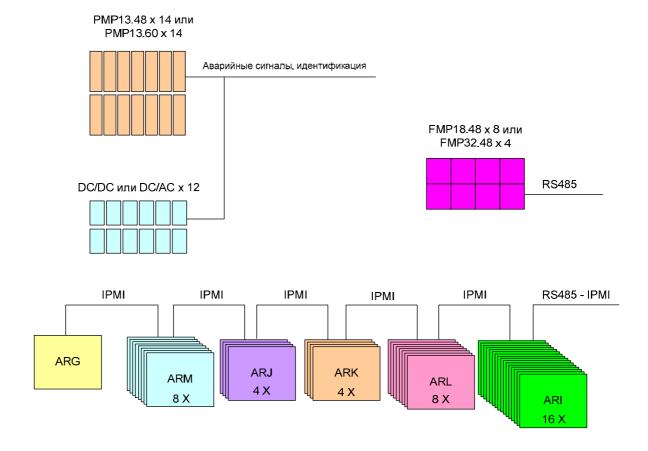
- управление вентиляторным блоком;
- управление вентиляторами теплообменника и нагревателей в корпусе типа Shelter;
- управление реле;
- управление панелью аварийной сигнализации;
- управление внешними устройствами;
- управление светодиодами и звуковым аварийным сигналом;
- управление дисплеем и кнопками;
- управление интерфейсом RS232;
- управление интерфейсами RS485;
- управление интерфейсом Ethernet 10/100T.

Функции аварийной сигнализации:

- генерирование аварийных сигналов;
- передача аварийных сигналов на выходы реле;
- передача аварийных сигналов на узел управления (агент SNMP).

Функции контроля:

- статистика системы;
- хронология событий системы электропитания.



Системные функции:

- загрузка новой версии программного обеспечения через узел управления;
- управление системой с использованием дисплея и кнопок;
- управление системой через веб-браузер.

22.1. Конфигурация системы

В системе электропитания могут находиться различные блоки и преобразователи, что зависит от типа системы и дополнительных требований пользователя. В распоряжении имеются блоки и преобразователи, изображенные на рисунке ниже.

22.1.1. Конфигурация типа системы электропитания

Контрольный блок ARH с аппаратных средств системы электропитания (задняя плата) считывает данные о типе системы электропитания. Предусматривается 16 различных типов, которые различаются в зависимости от типа и максимального количества встроенных выпрямителей, в зависимости от мощности системы и, следовательно, конфигурации шунтирующих резисторов, предохранителей и т.д.

Nº	ID3	ID2	ID1	ID0	Система	Напряж. системы	Tun AC/DC	Макс. кол-во	Секция статива (шкафа)	Макс. кол-во
1	0	0	0	0	MPS1000.50	48V	CMP3.48	8	MRO	1
2	0	0	0	1	не используется				_	
3	0	0	1	0	не используется					
4	0	0	1	1	не используется					
5	0	1	0	0	MPS1000.200	48V	FMP18.48	8	MRQ	1
							FMP32.48	4	MRR	1
6	0	1	0	1	MPS1000.200	48V	PMP13.48	14	MRD	2
7	0	1	1	0	не используется					
8	0	1	1	1	MPS1000.200	60V	PMP11.60	14	MRD	2
9	1	0	0	0	не используется					
10	1	0	0	1	не используется					
11	1	0	1	0	не используется					
12	1	0	1	1	не используется					
13	1	1	0	0	MPS1000.600	48V	FMP32.48	16	MRR	4
14	1	1	0	1	не используется					
15	1	1	1	0	не используется					
16	1	1	1	1	MPS1000.1500	48V	FMP32.48	32	MRR	8

22.1.2. Конфигурация преобразователей

Контрольный блок ARH обеспечивает просмотр преобразователей, встроенных в систему MPS. Для этого преобразователи оборудованы идентификационным номером. Контрольный блок считывает идентификационные номера (ID) двумя способами, которые различаются в зависимости от типа встроенного преобразователя. Контрольный блок немедленно после запуска процессора прочитает, в каком типе системы электропитания он находится и в зависимости от типа системы выбирает соответствующий способ коммуникации с преобразователями.

Выпрямители типа FMP18.48 и FMP32.48 имеют встроенный микроконтроллер, в который записаны обозначение и серийный номер производителя. Коммуникация контрольного блока с такими выпрямителями осуществляется через интерфейс RS485. Контрольный блок после перезагрузки (reset) проверяет, какие встроены преобразователи и периодически осуществляет с ними коммуникацию. Контрольный блок распознает в последствии подключенные преобразователи в течение минимум 5 минут. Максимально может быть подключено 8 преобразователей. В случае потери коммуникации с преобразователем, с которым контрольный блок уже коммуницировал, контрольный блок одновременно генерирует аварийный сигнал отказа преобразователя и несоответствия оборудования. В случае если была изменена оборудованность системы (отсоединение преобразователя), а не отказ преобразователя, администратор запускает функцию Конфигурация преобразователей, в результате чего аварийные сигналы будут сняты.

С вольтодобавочными конверторами, инверторами и выпрямителями типа PMP11.60 и PMP13.48, которые не имеют встроенного микроконтроллера, контрольный блок осуществляет коммуникацию через идентификационную схему (мультиплексированный сигнал), в которой записаны данные о преобразователе. Считывание идентификатора длится несколько секунд. Коммуникация возможно только когда преобразователь находится в режиме нормальной работы. В случае неисправности коммуникация невозможна, контрольный блок сохраняет последние считанные данные о преобразователе. Контрольный блок циклически проверяет 14 выпрямителей (только в случае, если система на основании ID установит, что в системе находятся выпрямители типа PMP11.60 и PMP13.48) и до 12 конверторов и/или инверторов (постоянно, независимо от ID системы). Один цикл длится максимум 10 минут. В это время контрольный блок определяет оборудованность всех позиций.

Функция Конфигурация преобразователей обеспечивает подтверждение текущей оборудованности системы MPS преобразователями и выполняется по запросу администратора. Расхождение с подтвержденной конфигурацией контрольный блок распознает в течение минимум 5 минут и генерирует соответствующий аварийный сигнал.

Контрольный блок обеспечивает пользователю графическое и табличное отображение встроенных преобразователей со всеми известными данными. Описание дано в главе *Контроль системы MPS* через терминал управления или узел управления.

22.1.3. Конфигурация блока ARG

В системе всегда установлен один блок контроля распределения постоянного тока (ARG). Контрольный блок периодически коммуницирует с данным блоком.

В случае потери коммуникации с блоком ARG, с которым контрольный блок уже коммуницировал, контрольный блок одновременно генерирует аварийный сигнал потери коммуникации, например, ALM38 Communication failure ARG1.

Контрольный блок обеспечивает пользователю графическое отображение блока. Описание дано в главе Контроль системы MPS через терминал управления или узел управления.

22.1.4. Конфигурация блоков ARM

Максимально может быть подключено 8 блоков контроля автоматических выключателей ARM. Контрольный блок распознает в последствии подключенные блоки ARL в течение минимум 10 минут или сразу же после перезагрузки (reset) контрольного блока.

В случае потери коммуникации с блоком ARM, с которым контрольный блок уже коммуницировал, контрольный блок одновременно генерирует аварийный сигнал потери коммуникации, например, ALM38 Communication failure ARM3. В случае если была изменена оборудованность системы (отсоединение блока), администратор запускает функцию Конфигурация дополнительных блоков (Units configuration), в результате чего аварийный сигнал будет снят.

Контрольный блок обеспечивает пользователю графическое отображение блоков. Описание дано в главе Контроль системы MPS через терминал управления или узел управления.

22.1.5. Конфигурация предохранителей и автоматических выключателей

Контрольный блок ARH считывает состояние предохранителей и автоматических выключателей из блока контроля распределения постоянного тока (ARG) и блоков контроля автоматических выключателей (ARM). Коммуникация с блоками контроля автоматических выключателей осуществляется по протоколу RS485. Блок контроля автоматических выключателей постоянно проверяет, какие предохранители исправны, какие автоматические выключатели включены. По запросу контрольного блока ARH блок контроля ARM передает состояние предохранителей и автоматических выключателей.

Функция Конфигурация предохранителей и автоматических выключателей (Fuses autoconfiguration) обеспечивает подтверждение исправных в настоящий момент предохранителей и включенных автоматических выключателей и выполняется по запросу администратора. Контрольный блок ARH генерирует аварийный сигнал о перегорании предохранителя или об отказе автоматического выключателя.

Предупреждение!

Если в последствии были установлены предохранители или включены автоматические выключатели, контрольный блок распознает это, но не контролирует до тех пор, пока администратор повторно не выполнит функцию *Конфигурация предохранителей и автоматических выключателей*.

Контрольный блок обеспечивает пользователю графическое отображение предохранителей и автоматических выключателей, а также ввод комментария (буквенно-цифровая запись). Описание дано в главе Контроль системы MPS через терминал управления или узел управления.

22.1.6. Конфигурация блоков измерения напряжения аккумуляторов ARI

Максимально может быть подключено 16 блоков измерения напряжения аккумуляторов ARI. Контрольный блок после перезагрузки (reset) проверяет, какие блоки ARI подключены к интерфейсу RS485 и периодически коммуницирует с ними. Контрольный блок распознает в последствии подключенные блоки ARL в течение минимум 10 минут или сразу же после перезагрузки (reset) контрольного блока.

В случае потери коммуникации с блоком ARI, с которым контрольный блок уже коммуницировал, контрольный блок одновременно генерирует аварийный сигнал потери коммуникации, например, ALM38 Communication failure ARI2. В случае если была изменена оборудованность системы (отсоединение блока), администратор запускает функцию Конфигурация дополнительных блоков (Units configuration), в результате чего аварийный сигнал будет снят.

Контрольный блок обеспечивает пользователю графическое отображение блоков измерения напряжения аккумуляторов и напряжение аккумуляторов. Описание дано в главе *Контроль системы MPS через терминал управления или узел управления*.

22.1.7. Конфигурация блоков ARJ, ARK, ARL

Максимально может быть подключено 4 блока управления реле ARJ. Контрольный блок после перезагрузки (reset) проверяет, какие блоки ARJ подключены к интерфейсу RS485 и периодически коммуницирует с ними. Контрольный блок распознает в последствии подключенные блоки ARL в течение минимум 10 минут или сразу же после перезагрузки (reset) контрольного блока.

Максимально может быть подключено 4 блока сбора аварийных сигналов ARK. Контрольный блок после перезагрузки (reset) проверяет, какие блоки ARK подключены к интерфейсу RS485 и периодически коммуницирует с ними. Контрольный блок распознает в последствии подключенные блоки ARL в течение минимум 10 минут или сразу же после перезагрузки (reset) контрольного блока.

Максимально может быть подключено 8 блоков измерения постоянного тока ARL. Контрольный блок после перезагрузки (reset) проверяет, какие блоки ARL подключены к интерфейсу RS485 и периодически коммуницирует с ними. Контрольный блок распознает в последствии подключенные блоки ARL в течение минимум 10 минут или сразу же после перезагрузки (reset) контрольного блока.

В случае потери коммуникации с блоком ARJ, ARK или ARL, с которым контрольный блок уже коммуницировал, контрольный блок одновременно генерирует аварийный сигнал потери коммуникации, например, ALM38 Communication failure ARJ2. В случае если была изменена оборудованность системы (отсоединение блока), администратор запускает функцию Конфигурация дополнительных блоков (Units configuration), в результате чего аварийный сигнал будет снят.

Контрольный блок обеспечивает пользователю графическое отображение блоков. Описание дано в главе Контроль системы MPS через терминал управления или узел управления.

22.2. Основные функции

22.2.1. Регулировка системного напряжения

Контрольный блок ARH изменяет выходное напряжение выпрямителей в зависимости от напряжения, определяемого администратором. Напряжение компенсируется в зависимости от температуры аккумуляторной батареи (температурная компенсация напряжения) и зарядного тока аккумуляторной батареи. Напряжение падает в случае пропадания сетевого напряжения и во время выполнения измерения емкости аккумуляторной батареи. Способ изменения напряжения отличается в зависимости от типа выпрямителя. Контрольный блок немедленно после запуска процессора прочитает, в каком типе системы электропитания он находится и в зависимости от типа системы выбирает соответствующий способ изменения напряжения.

Выпрямители типа FMP18.48 и FMP32.48 имеют встроенный микроконтроллер. Контрольный блок передает значение необходимого выходного напряжения преобразователям через последовательный интерфейс RS485. Контрольный блок сначала всем преобразователям (одному за другим) повышает/понижает напряжение на 0,3 В, затем процедура повторяется, пока система не достигнет необходимого напряжения, или приблизиться к нему точно на 110 мВ.

Выпрямителям типа PMP11.60 и PMP13.48 контрольный блок меняет выходное напряжение аналоговым способом через линию напряжения TVC. Таким способом напряжение регулируется одновременно всем выпрямителям. Напряжение меняется выпрямителям в пределах от 43 В до 57,5 В в системе 48 В и в пределах от 53,5 В до 72,1 В в системе 60 В.

22.2.1.1. Температурная компенсация системного напряжения

Температурная компенсация системного напряжения обусловлена температурным датчиком ТВ и настроена на основную температуру 20° С. Следовательно, при такой температуре температурный коэффициент напряжения батарей не имеет воздействия, и напряжение идентично установленному значению напряжения. А при возрастании или падении температуры напряжение системы изменяется по следующей формуле:

Usc = Us $- (TVC \times (T - 20^{\circ} C))$

Usc - температурно компенсированное напряжение системы в В

Us - напряжение системы при 20° С в В

TVC - температурный коэффициент напряжения аккумуляторных батарей

T - температура батарей в °C

При помощи температурной компенсации можно понизить выходное напряжения в системе 48 В только до 50,0 В, в системе 60 В - только до 62,5 В. Температурный коэффициент напряжения (TVC) определен рекомендованным производителем значением 0,1 В/°С для системы 48 В и 0,12 В/° С для системы 60 В, или же вручную введенным значением, определяемым администратором через дисплей, или через веб-окно приложения Web Based Management.

Администратор может заблокировать или разблокировать функцию температурной компенсации системного напряжения через дисплей или веб-окно приложения Web Based Management.

22.2.1.2. Ограничение зарядного тока батареи

Если ток, который течет в батарею, больше заводских установок или значения, определяемого администратором в веб-окне приложения Web Based Management, контрольный блок начинает понижать выходное напряжение выпрямителей и тем самым ограничивает зарядный ток батареи. Когда ток, который течет в батарею, понижается на 5 %, контрольный блок повышает напряжение выпрямителей.

Администратор может заблокировать или разблокировать функцию ограничения зарядного тока батареи через дисплей или веб-окно приложения Web Based Management.

22.2.1.3. Ускоренный заряд классических аккумуляторных батарей

Контрольный блок выполняет функцию ускоренного заряда батарей, когда после разряда батарею необходимо быстро зарядить и/или когда желателен периодический заряд батареи повышенным напряжением. Администратор в веб-окне приложения Web Based Management выбирает необходимый способ активации функции ускоренного заряда батарей. Выбор способа активации функции:

- в зависимости от тока, который течет в батареи (Current),
- в регулярных временных интервалах (Time),
- в зависимости от тока, который течет в батареи, и в регулярных временных интервалах (Both).

Если ток, который течет в батарею (зарядный ток), превышает заводское значение или значение, определяемое администратором в веб-окне приложения Web Based Management, контрольный блок постепенно (шаг 0,3 В или 1 шаг в секунду) повышает выходное напряжение выпрямителей на 56,5 В для системы 48 В и на 70,5 В для системы 60 В (заводская установка) или на напряжение, определяемое администратором в веб-окне приложения Web Based Management. Если ток понижается ниже заводского значения или значения, определяемого администратором в веб-окне приложения Web Based Management, контрольный блок понижает выходное напряжение выпрямителей на 54,0 В для системы 48 В и на 68,1 В для системы 60 В или на напряжение системы, определяемое администратором в веб-окне приложения Web Based Management. Установленное значение ускоренного заряда батарей контрольный блок изменяет в соответствии с температурой окружения, если активирована температурная компенсация системного напряжения.

Если администратор хочет, чтобы периодически выполнялся ускоренный заряд батарей повышенным напряжением независимо от тока, который течет в батарею, то в веб-окне приложения Web Based Management необходимо определить периодичность и продолжительность ускоренной зарядки батарей.

Администратор может разблокировать или заблокировать функцию ускоренного заряда классических батарей через дисплей или веб-окно приложения Web Based Management. По умолчанию функция заблокирована.

22.2.1.4. Напряжение выпрямителей при пропадании сетевого напряжения

В случае пропадания всех трех фаз сетевого напряжения, и когда в системе находятся выпрямители типа FMP18.48 и FMP32.48, контрольный блок понижает выходное напряжение выпрямителей, так что оно на 1 В ниже текущего измеренного системного (батарейного) напряжения. При восстановлении переменного тока, системное напряжение постепенно повышается до установленного значения.

В случае пропадания всех трех фаз сетевого напряжения и в системе находятся выпрямители типа PMP11.60 и PMP13.48, контрольный блок постепенно настраивает выходное напряжение выпрямителей на минимально возможное значение, приблизительно 49 В. После возвращения питания переменным током системное напряжение постепенно повышается до установленного значения.

22.2.1.5. Напряжение выпрямителей при выполнении измерения емкости аккумуляторных батарей

В случае, когда выполняется тестирование емкости батарей, и когда в системе находятся выпрямители типа FMP18.48 и FMP32.48, контрольный блок постепенно настраивает выходное напряжение выпрямителей на минимально возможное значение, приблизительно 42 В. После окончания тестирования емкости батарей системное напряжение постепенно повышается до установленного значения.

В случае, когда выполняется тестирование емкости батарей, и когда в системе находятся выпрямители типа FMP18.48 и FMP32.48, контрольный блок постепенно настраивает выходное напряжение выпрямителей на минимально возможное значение, приблизительно 42 В в одном шаге. После окончания тестирования емкости батарей системное напряжение сначала быстро повышается до напряжения приблизительно 47 В, а затем постепенно повышается по шагам до установленного значения.

22.2.2. Отключение аккумуляторных батарей или нагрузки при низком напряжении или высокой температуре

Батареи защищены от глубокой разрядки при помощи реле LVD, которое отключает батарею от потребителей. Путем предварительного отключения нагрузки (неприоритетные потребители) продлевается время работы приоритетной нагрузки. Реле LVD также отключает батареи и нагрузку при высокой температуре батарей или окружения станции. Администратор может заблокировать или разблокировать функцию отключения батарей при высокой температуре через дисплей или веб-окно приложения Web Based Management.

Реле LVD управляет контрольный блок ARH косвенно через блок ARG. Контрольный блок передает запрос на включение или выключение через последовательный интерфейс RS485. Батареи или нагрузка отключаются, когда напряжение становится ниже $42\ B\pm0,5\ B$ ($52,5\ B\pm0,5\ B-B$ системе $60\ B$) или ниже значения, определяемого администратором в веб-окне приложения Web Based Management. Батареи или нагрузка повторно включаются, когда напряжение становится выше $50\ B\pm0,5\ B$ ($62,5\ B\pm0,5\ B-B$ системе $60\ B$) или выше значения, определяемого администратором в вебокне приложения Web Based Management. Аналогично реле LVD отключает батареи и нагрузку, когда температура одного из датчиков TA или TB превышает $60\ C\pm2\ C$, или значение, определяемое администратором в веб-окне приложения Web Based Management. Батареи и нагрузка включаются обратно, когда температура понижается под $50\ C\pm2\ C$ или до значения, определяемого администратором в веб-окне приложения Web Based Management.

В случае неисправности контрольного блока ARH или потери коммуникации между блоками ARH и ARG, функция управления реле LVD переходит к аналоговой схеме на блоке ARG. Эта схема обеспечивает, чтобы при падении напряжения под 42 В \pm 0,5 В (52,5 В \pm 0,5 В – в системе 60 В) реле LVD выключаются, а при возрастании напряжения до или свыше 50 В \pm 1 В (62,5 В \pm 1 В – в системе 60 В), снова включаются. Аналоговая схема не выключает реле LVD при высокой температуре датчиков TA или TB.

Примечание!

Если активен аварийный сигнал «ALM39 – Уведомление о выключении электропитания» реле LVD1 выключается с задержкой в 1 минуту. Задержек не возникает в случае, когда реле LVD управляется аналоговой схемой.

22.3. ИЗМЕРИТЕЛЬНЫЕ ФУНКЦИИ

22.3.1. Измерение системного напряжения

Системное напряжения измеряется в точке непосредственно перед разводкой до потребителей. Системное напряжение отличается от напряжения батарей падением напряжения на подключенных кабелях батареи.

Измерение постоянного напряжения имеет класс точности - 1. Администратор может через дисплей выполнить калибровку напряжения и тем самым повысить точность измерения системного напряжения.

Контрольный блок обеспечивает отображение измеренного значения и на его основании по необходимости генерирует аварийный сигнал и запускает дополнительную функцию, например: изменение напряжения выпрямителей, выключение реле LVD и т.д.

22.3.2. Измерение сетевого напряжения

Трехфазное сетевое напряжение измеряется тремя измерительными трансформаторами, которые находятся в блоке VRT на схемах, которые подстраивают переменное напряжение для входа выпрямителя в контрольном блоке ARH. Переменное напряжение измеряется в пределах от 0 В до 270.0 В с точностью 1,5 %.

Контрольный блок ARH обеспечивает отображение измеренного значения и на его основании по необходимости генерирует аварийный сигнал и запускает дополнительную функцию, например: изменение напряжения выпрямителей.

22.3.3. Измерение частоты сетевого напряжения

Частота сетевого напряжения L1 измеряется тремя измерительными трансформаторами, которые находятся в блоке VRT на схемах, которые подстраивают переменное напряжение для обработки микропроцессором в контрольном блоке ARH. Контрольный блок обеспечивает измерение частоты с точностью 1 %.

Контрольный блок ARH обеспечивает отображение измеренного значения и на его основании по необходимости генерирует аварийный сигнал.

22.3.4. Измерение тока

Ток потребителей и отдельных батарей измеряется с помощью схемы на блоке контроля распределения постоянного тока (ARG). На блоке ARG можно мерить ток нагрузки, ток двух батарей или ток третей батареи или второй нагрузки. Измерение проводит микроконтроллер блока ARG, который измеренные значения передает контрольному блоку ARH.

Ток выпрямителей контрольный блок ARH рассчитывает из тока нагрузки и тока батарей:

IR = IL1 + IL2 - IB1 - IB2 - IB3

Контрольный блок обеспечивает отображение измеренного значения и на его основании по необходимости запускает определенные функции, например: изменение напряжения выпрямителей.

22.3.5. Расчет и отображение выходной мощности выпрямителей

Контрольный блок рассчитывает мощность из тока выпрямителей и системного напряжения:

P = IR*U

Контрольный блок обеспечивает отображение рассчитанного значения.

22.3.6. Измерение тока определенных выпрямителей

Способ изменения тока отдельных выпрямителей отличается в зависимости от типа встроенного выпрямителя. Контрольный блок немедленно после запуска процессора прочитает, в каком типе системы электропитания он находится и в зависимости от типа системы выбирает соответствующий способ коммуникации с преобразователями.

Измерение выполняется с точностью 5 % и отображением ± 1 А. Данное измерение предназначено только для индикации деления нагрузки.

Контрольный блок обеспечивает табличное и графическое отображение рассчитанных значений.

22.3.7. Измерение напряжения аккумуляторов

Измерения выполняются блоком измерения напряжения аккумуляторов батареи ARI. Максимально может быть встроено в систему 16 блоков такого типа.

Микроконтроллер на блоке ARI выполняет измерение напряжения и передает эти данные контрольному блоку ARH.

Контрольный блок обеспечивает табличное и графическое отображение рассчитанных значений. Кроме того, на основе измеренных значений рассчитывается отступление (в %) каждого отдельного аккумулятора от среднего значения и генерируется соответствующий сигнал. Описание необходимых настроек дано в главе Контроль системы MPS через терминал управления или узел управления.

22.3.8. Измерение напряжения на блоках измерения постоянного напряжениям ARL

Измерение напряжения выполняется блоками измерения напряжения постоянного тока ARL. Максимально в систему может быть встроено 8 блоков такого типа. Микроконтроллер на блоке ARL выполняет измерение и передает эти данные контрольному блоку ARH.

Контрольный блок обеспечивает табличное и графическое отображение рассчитанных значений. Кроме того, на основе измеренных значений обеспечивается генерирование соответствующего сигнала. Описание необходимых настроек дано в главе Контроль системы MPS через терминал управления или узел управления.

22.3.9. Измерение температуры

22.3.9.1. Измерение температуры окружающей среды и аккумуляторных батарей

Температура окружающей среды и батарей измеряется стандартными линейными датчиками ТА и ТВ, которые обеспечивают измерение температуры от 0° С до 100° С. Датчик является температурно-зависимым резистором. Схема в контрольном блоке ARH обеспечивает чтение соответствующего напряжения на выпрямителе.

Когда нет встроенного температурного датчика, контрольный блок считывает температуру свыше 100° С. В этом случае контрольный блок не учитывает данные о температуре и не отображает их. Когда контрольный блок считывает температуру ниже -20° С, данные о температуре не учитываются и не отображаются.

Контрольный блок обеспечивает отображение измеренных значений и по необходимости генерирует аварийный сигнал, а также обеспечивает соответствующую регулировку выходного напряжения и запуск определенных функций.

22.3.9.2. Измерение температуры в системе электропитания

Температура в системе электропитания измеряется стандартными линейными датчиками TR, которые обеспечивают измерение температуры от 0° C до 100° C. Датчик является температурно-зависимым резистором. Схема в контрольном блоке ARH обеспечивает чтение соответствующего напряжения на выпрямителе.

Когда нет встроенного температурного датчика, контрольный блок считывает температуру свыше 100° С. В этом случае контрольный блок не учитывает данные о температуре и не отображает их. Когда контрольный блок считывает температуру ниже -20° С, данные о температуре не учитываются и не отображаются.

Контрольный блок обеспечивает отображение измеренного значения и по необходимости генерирует аварийный сигнал и запускает определенную функцию, например, запускает вентиляторный блок (FRD).

22.3.10. Измерение влажности окружающей среды

Влажность измеряется стандартным датчиком, обеспечивающим измерение в пределах от 0 до 100 %. Схема в контрольном блоке ARH обеспечивает чтение соответствующего напряжения на выпрямителе.

Контрольный блок обеспечивает отображение измеренного значения.

22.3.11. Измерение емкости аккумуляторных батарей

Контрольный блок ARH обеспечивает выполнение измерения емкости батарей через веб-окно приложения Web Based Management. Емкость батарей определяется в результате измерения тока и напряжения батарей в течение определенного периода разрядки.

Под названием емкости батареи 1 считаются все батареи, подключенные к реле LVD1. Под названием емкости батареи 2 рассматриваются все батареи, подключенные к реле LVD2. Под названием емкости батареи 3 считаются все батареи, подключенные к реле LVD 3.

Администратор может выполнить запуск измерения, прервать тест или только просмотреть результаты последних пяти завершенных измерений.

Перед началом измерения администратор может настроить следующие входные параметры:

- емкость батареи 1, емкость батареи 2 и емкость батареи 3;
- зарядный ток батареи, при котором считается, что батареи заряжены;
- напряжение Udt (Discharge termination voltage), до которого должны разряжаться батареи, чтобы измерение закончилось (рекомендуемые значения 43, 44, 45 или 46 В);
- количество циклов измерений/зарядки, которые должны быть выполнены;
- коэффициент батареи k.

Измерения выполняются со снижением напряжения выпрямителей. Описание дано в главе *Напряжение выпрямителей при выполнении измерения емкости аккумуляторных батарей!*

Сначала необходимо проверить предварительные условия для начала измерения:

- должно быть вписано значение емкости измеряемой батареи;
- ток нагрузки должен быть > 10 А;

- напряжение системы должно быть Un ± 0,2 B;
- батареи должны быть заряжены;
- все выпрямители должны работать;
- батарея должна быть подключена;
- должны присутствовать все три фазы напряжения.

Если условия не выполнены, измерение не начинается, выводится только соответствующее системное сообщение.

Если после последнего разряда батарей прошло менее двух дней, будет выведено предупреждение о том, что возможно батарея не заряжена на 100%, поскольку после последнего разряда прошло менее 48 часов. Начать измерение можно только после повторного подтверждения.

Если условия выполнены, начинается измерение.

При выполнении измерений необходимо знать, что:

- измерение выполняется до окончания последнего цикла;
- во время выполнения измерения емкости батарей, активен аварийный сигнал «TEST BAT»;
- при пропадании какой-либо фазы сетевого напряжения более чем на 10 минут тест прерывается и одновременно повторно включаются реле LVD отключенных батарей.
- контрольный блок во время измерения емкости батареи 1 выключает реле LVD батарей 2 и 3;
- после заключения измерения емкости 1 и при активизированном ограничении тока заряда батарей контрольный блок повторно включает реле LVD батарей 2 и 3 (когда ток заряда батареи 1 на 2 А ниже максимального тока заряда батареи 1). Если ограничение тока заряда батарей деактивизировано, контрольный блок повторно включает реле LVD батарей 2 и 3, когда ток заряда батареи 1 становится ниже 3*I₁₀ батареи 1;
- контрольный блок во время измерения емкости батареи 2 выключает реле LVD батарей 1 и 3;
- после заключения измерения емкости батареи 2 и при активизированном ограничении тока заряда батарей контрольный блок повторно включает реле LVD батарей 1 и 3 (когда ток заряда батареи 2 на 2 А ниже максимального тока заряда батареи 2). Если ограничение тока заряда батарей деактивизировано, контрольный блок повторно включает реле LVD батарей 1 и 3, когда ток заряда батареи 2 становится ниже 3*I₁₀ батареи 2;
- контрольный блок во время измерения емкости батареи 3 выключает реле LVD батарей 1 и 2;
- после заключения измерения емкости батареи 3 и при активированном ограничении тока заряда батарей контрольный блок повторно включает реле LVD батарей 1 и 2 (когда ток заряда батареи 3 на 2 А ниже максимального тока заряда батареи 3). Если ограничение тока заряда батарей деактивировано, контрольный блок повторно включает реле LVD батарей 1 и 2, когда ток заряда батареи 3 становится ниже 2*I₁₀ батареи 3;
- во время измерения емкости батареи не выключается нагрузка нижнего приоритета.

Во время выполнения измерения емкости батарей невозможно изменять параметры системы.

Один цикл измерения выполняется столько времени, пока батарейное или системное напряжение не станет меньше значения, определенного перед началом измерения Udt. Контрольный блок ARH выполняет измерения раз в 10 с.

Измеренная емкость батареи:

Поскольку измерение емкости батареи выполняется током потребителей, при любой температуре и максимальном напряжении 43 В, измеренная и номинальная емкость батареи не могут сравниваться непосредственно. Из-за этого контрольный блок рассчитывает ожидаемую емкость батареи в зависимости от температуры батареи, напряжения Udt и времени разрядки батареи по формуле:

$$Q_{PBAT} = Q_{BAT} * \alpha / k$$

 α - температурный фактор, определяемый на заводе

k – коэффициент, который зависит от тока разрядки и напряжения, до которого выполняется измерение

 Q_{BAT} – номинальная емкость батареи

Согласно заводским настройкам учитывается таблица коэффициентов k для батареи Oerlikon при разрядке до напряжения 44 В.

	10	30	60	120	180	240	300	360	480	600
	минут									
44 B	2,603	1,897	1,502	1,314	1,216	1,157	1,114	1,085	1,043	1,005

Пользователь может изменить таблицу коэффициентов в веб-окне приложения Web Based Management.

Падение напряжения на кабелях между батареей и блоком распределения постоянного тока системы электропитания не учитывается при расчете ожидаемой емкости. Если падения достаточно велики, необходимо учитывать, что тест не будет выполнен до необходимого напряжения, а будет завершен раньше. Следовательно, ожидаемая емкость будет выше измеренной. Коэффициент может быть оценен при помощи таблицы коэффициентов.

Контрольный блок обеспечивает отображение последних пяти измерений. Результаты содержат: время начала и окончания измерения, продолжительность измерения, средний, максимальный и минимальный разрядный ток батареи, измеренную, ожидаемую и номинальную емкость батареи. Контрольный блок также обеспечивает графическое отображение разрядки и зарядки батареи по отдельным аккумуляторам.

Измерение емкости батареи выполняется автоматически, а именно при пропадании всех трех фаз переменного тока. Результаты измерения общей емкости батарей сохраняются в таком же виде, как если бы они выполнялись администратором.

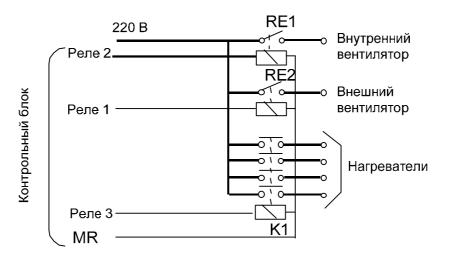
22.4. Функции управления

22.4.1. Управление вентиляторным блоком

Контрольный блок включает вентиляторный блок, когда температура датчика TR превышает 45° C $\pm 2^{\circ}$ C или значение, определяемое администратором в веб-окне приложения Web Based Management, и выключает, когда пройдет 15 ± 2 минуты. Одновременно температура TR должна снизиться под значение 35° C $\pm 2^{\circ}$ C или значение, уопределяемое администратором в веб-окне приложения Web Based Management.

Эта функция предназначена для системы электропитания, в которой установлен вентиляторный блок и датчик TR и которую необходимо активизировать в веб-окне приложения Web Based Management.

22.4.2. Управление реле


Контрольный блок обеспечивает непосредственное включение/выключение шести реле, которые могут служить для включения/выключения любых устройств и/или для сигнализации аварийного состояния и/или для управления корпусом типа Shelter. Реле находятся в контрольном блоке ARH и защищены от перегрузки элементом РТС сопротивлением 125 Ом при температуре 25° С.

Контрольный блок обеспечивает управление реле, которые находятся в блоках управления реле ARJ. В системе максимально может быть 4 блока управления реле ARJ, каждый блок имеет 4 реле.

Администратор определяет назначение каждого реле в веб-окне приложения Web Based Management. Описание настроек дано в главе *Контроль системы MPS через терминал управления или узел управления*.

22.4.2.1. Управление корпусом

Если администратор в веб-окне приложения Web Based Management активирует функцию Aircondition, контрольный блок для управления внешним вентилятором будет использовать реле 1, для управления внутренним вентилятором — реле 2, а для управления нагревателем — реле 3. Управляющие сигналы передаются из контрольного блока до реле нагревателей и двух реле вентиляторов в электрораспределительном щите.

Блок-схема соединений управляющих элементов в электрораспределительном щите

22.4.2.1.1. Регулировка внутреннего вентилятора теплообменника при повышенной температуре

Контрольный блок ARH включает внутренний вентилятор теплообменника при температуре окружающей среды TA, которая на заводе установлена на 35° C $\pm 2^{\circ}$ C, или при температуре, определяемой администратором в веб-окне приложения Web Based Management. Вентилятор выключается при температуре, которая на заводе установлена на 30° C $\pm 2^{\circ}$ C, или при температуре, определяемой администратором в веб-окне приложения Web Based Management.

22.4.2.1.2. Регулировка внешнего вентилятора теплообменника при повышенной температуре

Контрольный блок ARH включает внешний вентилятор теплообменника при тенденции увеличения температуры окружающей среды TA, которая на заводе установлена на > 40° C $\pm 2^{\circ}$ C, или при температуре, определяемой администратором в веб-окне приложения Web Based Management. Вентилятор выключается при тенденции снижения внутренней температуры, которая на заводе установлена на < 35° C $\pm 2^{\circ}$ C, или при температуре, определяемой администратором в веб-окне приложения Web Based Management.

22.4.2.1.3. Включение и выключение нагревателей и внутреннего вентилятора теплообменника при пониженной температуре

Контрольный блок ARH включает нагреватели и внутренний вентилятор теплообменника при тенденции снижения температуры окружающей среды TA, которая на заводе установлена на $< 10^{\circ}$ C $\pm 1^{\circ}$ C, или при температуре, определяемой администратором в веб-окне приложения Web Based Management. Нагреватели и вентилятор выключаются при тенденции повышения температуры, которая на заводе установлена на $> 12^{\circ}$ C $\pm 1^{\circ}$ C, или при температуре, определяемой администратором в веб-окне приложения Web Based Management.

22.4.2.2. Управление панелью аварийной сигнализации

Если администратор в веб-окне приложения Web Based Management активирует функцию Alarm panel, контрольный блок будет управлять реле для управления крайне срочными, срочными и несрочными аварийными сигналами. Администратор в веб-окне приложения Web Based Management выбирает реле из набора реле контрольного блока и блоков ARJ. Управляющие сигналы передаются на любой приемник аварийных сигналов, например, внешние светодиоды.

22.4.2.3. Управление внешними устройствами

Если администратор активирует функцию Control of Device, контрольный блок будет осуществлять управление соответствующим реле. Администратор в веб-окне приложения Web Based Management выбирает реле из набора реле контрольного блока и блоков ARJ. Управляющие сигналы могут передаваться на любое внешнее устройство.

22.4.3. Управление светодиодами и звуковым аварийным сигналом

На лицевой стороне контрольного блока находятся два красных светодиода и два зеленых.

Верхний зеленый светодиод POWER горит, когда контрольный блок ARH генерирует вспомогательное электропитание для процессора. Нижний зеленый светодиод ETHERNET горит, когда контрольный блок ARH подключен к компьютерной сети.

Верхний красный светодиод SYSTEM FAIL горит при возникновении ошибок программного обеспечения. Второй красный светодиод ALARM горит при наличии какого-либо аварийного сигнала, кроме сигнала TEST BAT.

В контрольный блок встроен зуммер для оповещения о появлении крайне срочного аварийного сигнала.

Администратор может заблокировать или разблокировать функцию звукового аварийного сигнала в веб-окне приложения Web Based Management.

22.4.4. Управление дисплеем и кнопками

На лицевой стороне контрольного блока находятся дисплей и три кнопки, при помощи которых можно управлять системой электропитания. Описание функций дано в главе *Управление системой MPS при помощи кнопок на контрольном блоке*.

22.4.5. Управление интерфейсом RS232

Система электропитания подключается к внешнему окружению через интерфейс RS232, разъем находится на лицевой стороне контрольного блока. Интерфейс служит для соединения TCP/IP и SNMP с узлом управления. Система электропитания подключается к узлу управления следующим образом:

- непосредственно кабелем RS232 или
- через порт RS232 станции SI2000/SI3000.

Соединение всегда устанавливается по запросу узла управления.

22.4.6. Управление интерфейсами RS485

Контрольный блок поддерживает два интерфейса RS485.

22.4.6.1. Интерфейс RS485 для управления выпрямителями

Данный интерфейс предназначен для коммуникации с выпрямителями типа FMP18.48 и FMP32.48. Разъем находится на задней панели BRN.

22.4.6.2. Интерфейс RS485 для управления блоками ARJ, ARK, ARL и ARM

Интерфейс предназначен для коммуникации с блоками измерения и контроля: блок управления блоком распределения постоянного тока ARG, блок контроля автоматических выключателей ARM, блок измерения напряжения аккумуляторов ARI, блок управления реле ARJ, блок сбора аварийных сигналов ARK, блок измерения постоянного тока ARL. Разъем находится на задней панели BRO.

22.4.7. Управление интерфейсом Ethernet 10/100T

Контрольный блок управляет интерфейсом Ethernet 10/100T. Интерфейс служит для соединения TCP/IP и SNMP с MN. Разъем находится на лицевой панели контрольного блока ARH.

22.5. Функции аварийной сигнализации

Контрольный блок на основе измеренных величин, считанных с аварийных входов, и настроек администратора генерирует аварийные сигналы системы электропитания и его окружения. Описание настроек аварийных сигналов дано в главе Контроль системы MPS через терминал управления или узел управления.

В результате появления всех аварийных сигналов, кроме «TEST BAT», загорается светодиод на лицевой стороне контрольного блока и тем самым оповещает о присутствии одного или нескольких аварийных сигналов. В случае появления крайне срочного аварийного сигнала, контрольный блок генерирует звуковой аварийный сигнал.

Аварийные сигналы отображаются на дисплее контрольного блока. Вместе с тем контрольный блок передает аварийные сигналы через сеть Ethernet на локальный ПК или на узел управления (протокол SNMP). В то же время контрольный блок обеспечивает передачу аварийных сигналов в любой пункт управления через плавающие (floating) контакты реле.

22.5.1. Аварийные сигналы и заводские настройки степени срочности

Nº	Описание ошибки	Название аварийного сигнала MN V6 (англ.)	Объект аварийного сигнала	
01	Ускоренный заряд аккумуляторной батареи	BOOST CHARGING	BATT	N
02	Высокое напряжение батареи	HIGH BATTERY VOLTAGE	BATT	S
03	Низкое напряжение батареи	LOW BATTERY VOLTAGE	BATT	S
04	Критически низкое напряжение батареи	CRITICALLY LOW BATTERY VOLTAGE	BATT	U
05*	Неисправность электросети	MAINS FAILURE	PHASE.L1	U
06*	Неисправность предохранителя/автоматического выключателя № 11 в секции FRN2	FUSE/CB FAILURE	CB.FRN2.CB11	U
07*	Отказ преобразователя в секции MRD1	MODULE FAILURE	MODULE.MRD1. POZ7	U
80	Выключение звукового аварийного сигнала	AUDIO ALARM DISABLED	ARH	N
09	Пожар	FIRE	ENV. FIRESENS	U
10	Неисправность оборудования передачи	TRANSMISSION EQUIPMENT FAILURE	ENV. EQUIP	U
11	Критически высокая температура окружения	CRITICALLY HIGH TEMP OF ENVIRONMENT	ENV.TEMP	U
12	Критически низкая температура окружения	CRITICALLY LOW TEMP OF ENVIRONMENT	ENV.TEMP	U
13	Двери 1 открыты	OPEN DOOR1	ENV.SHELTER	Ν
14	Двери 1 не закрыты на замок	UNLOCKED DOOR1	ENV.SHELTER	Ν
15	Двери 2 открыты	OPEN DOOR2	ENV.SHELTER	Ν
16	Двери 2 не закрыты на замок	UNLOCKED DOOR1	ENV.SHELTER	Ν
17	Измерение емкости аккумуляторной батареи	BATTERY CAPACITY MEASUREMENT	BATT	N
19	Разряженная батарея на RTC	FLAT RTC BATTERY	ARH	S
20	Критически высокая температура выпрямителя	CRITICALLY HIGH TEMP OF RECTIFIERS	REC.TEMP	U
21*	Критическая асимметрия аккумуляторов батареи 11	SYMMETRY FAILURE	BATT01.BLOCK7	S
22*	Несоответствие оборудования системы электропитания	INCONSISTENT EQUIPMENT	MODULE.MRD1. POZ7	S
23**	Неисправность реле LVD1	FAILURE OF RELAY	LVD1	U
24	'	Не используется		
25**	Подзаряд аккум. батареи 1	MAINTENANCE CHARGING	BATT1	Ν
26		Не используется		
27	Отказ генератора	GENERATOR FAILURE	AC.GEN	U

28	Неправильная сетевая частота	FREQUENCY FAILURE	AC	U
29	Неисправность кондиционера 1	FAILURE OF AIR-CONDITIONER 1	ENV.AIRCON	Ν
30	Неисправность кондиционера 2	FAILURE OF AIR-CONDITIONER 1	ENV.AIRCON	N
31		Не используется		
32		Не используется		
33		Не используется		
34		Не используется		
35	Генератор работает	GENERATOR RUNNING	AC.GEN	U
36		Не используется		
37		Не используется		
38	Потеря коммуникации с блоком ARx	Communication failURE of any ARX UNIT	ARX	U
39	Уведомление о выключении питания системы электропитания	POWER-SUPPLY SHUT-OFF WARNING	ARH	U
40	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
41	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
42	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
43	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
44	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
45	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
46	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
47	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
48	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
49	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
50	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
51	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
52	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
53	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
54	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
55	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
56	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
57	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
58	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
59	Аварийный сигнал, определяемый пользователем	USER DEFINED FAILURE	ENV	U
60	Аварийный сигнал, определяемый	USER DEFINED FAILURE	ENV	U

	пользователем			
61	Аварийный сигнал, определяемый	USER DEFINED FAILURE	ENV	U
	пользователем			
62	Аварийный сигнал, определяемый	USER DEFINED FAILURE	ENV	U
	пользователем			
63	Аварийный сигнал, определяемый	USER DEFINED FAILURE	ENV	U
	пользователем			
64	Аварийный сигнал, определяемый	USER DEFINED FAILURE	ENV	U
	пользователем			

Может присутствовать несколько аварийных сигналов. Смотри подробное описание аварийного сигнала.

22.5.2. Передача аварийных сигналов на узел управления версии 5 (SNMP V5)

На узле управления версии 5 сохраняются уже существующие названия аварийных сигналов. Степень срочности аварийных сигналов при передаче на узел управления версии 5 не изменяется. Даже если администратор изменит степень срочности аварийного сигнала в веб-окне приложения Web Based Management, на узле управления версии 5 будет отображена и учтена степень срочности из приведенной ниже таблицы. Аварийные сигналы (например, 05, 07, 22,...) не содержат информацию об объекте аварийного сигнала или о модуле, ставшего причиной появления аварийного сигнала. Контрольный блок передает общий аварийный сигнал на SNMP V5.

Nº	Описание ошибки	Название аварийного сигнала MN V5	
		(англ.)	
01	Ускоренный заряд	BOOST CHARGING	Ν
	аккумуляторной батареи		
02	Высокое напряжение батареи	BATTERY HIGH VOLTAGE	S
03	Низкое напряжение батареи	BATTERY LOW VOLTAGE	S
04	Критически низкое напряжение батареи	BATTERY CRITICALLY LOW VOLTAGE	U
05	Неисправность электросети	MAINS FAILURE	U
06	Отказ	FUSE FALLING OUT	U
	предохранителя/автоматического		
	выключателя		
07	Отказ преобразователя	MODULE ALARM	U
80	Выключение звукового	AUDIO ALARM DISABLED	Ν
	аварийного сигнала		
09	Пожар	FIRE	U
10	Неисправность оборудования передачи	TRANSMISSION EQUIPMENT FAILURE	U
11	Критически высокая температура окружения	CRITICALLY HIGH TEMPERATURE	U
12	Критически низкая температура окружения	CRITICALLY LOW TEMPERATURE	U
13	Двери 1 открыты	OPEN DOOR 1	Ν
14	Двери 1 не закрыты на замок	UNLOCKED DOOR 1	Ν
15	Двери 2 открыты	OPEN DOOR 2	Ν
16	Двери 2 не закрыты на замок	UNLOCKED DOOR 2	Ν
17	Измерение емкости	BATTERY CAPACITY MEASUREMENT	Ν
	аккумуляторной батареи		
18	Отказ запоминающего устройства	FLASH FAILURE	U

^{**} Смотри особенности данного аварийного сигнала в его описании.

	FLASH		
19	Разряженная батарея на RTC	FLAT RTC BATTERY	S
20	Критически высокая температура выпрямителя	CRITICALLY HIGH TEMP OF RECTIFIERS	U
21	Критическая асимметрия аккумуляторов	SYMMETRY FAILURE OF BATTERY BLOCK	S
22	Несоответствие оборудования системы электропитания	INCONSISTENT EQUIPMENT	S
23	Неисправность реле LVD1	FAILURE OF BATTERY RELAY 1	U
24	Неисправность реле LVD2	FAILURE OF BATTERY OR LOAD RELAY 2	U
25	Подзаряд аккум. батареи 1	MAINTENANCE CHARGING OF BATTERY 1	Ν
26	Подзаряд аккум. батареи 2	MAINTENANCE CHARGING OF BATTERY 2	N
27	Отказ генератора	GENERATOR FAILURE	U
28	Неправильная сетевая частота	FREQUENCY FAILURE	U
29	Неисправность кондиционера 1	FAILURE OF AIR-CONDITIONER 1	Ν
30	Неисправность кондиционера 2	FAILURE OF AIR-CONDITIONER 2	Ν
31	Аварийный сигнал,	USER-DEFINED ALARM: ALARM 40 -45	U
	определяемый пользователем	Несколько разделенных запятой аварийных сигналов, текст с MPS	
32	Аварийный сигнал, определяемый пользователем	USER-DEFINED ALARM: ALARM 46 -51 Несколько разделенных запятой аварийных сигналов, текст с MPS	U
33	Аварийный сигнал, определяемый пользователем	USER-DEFINED ALARM: ALARM 52 -57 Несколько разделенных запятой аварийных сигналов, текст с MPS	U
34	Аварийный сигнал, определяемый пользователем	USER-DEFINED ALARM: ALARM 58 -64 Несколько разделенных запятой аварийных сигналов, текст с MPS	U
35	Генератор работает	GENERATOR RUNNING	U
36	Неисправность реле LVD3	FAILURE OF LVD RELAY 3	U
37	Подзаряд аккум. батареи 3	MAINTENANCE CHARGING OF BATTERY 3	Ν
38	Потери коммуникации	Communication failure	U
39-64		Не используется	

Сокращения: N – несрочный аварийный сигнал

S – срочный аварийный сигнал

U – крайне срочный аварийный сигнал

22.5.3. ALM 01 - BOOST CHARGING – Ускоренный заряд аккумуляторной батареи

Если зарядный ток батареи превысит рекомендуемое производителем значение и контрольный блок включит функцию *Ускоренный заряд классической аккумуляторной батареи*, одновременно с этим контрольным блоком будет сгенерирован аварийный сигнал "ALM 01 — Ускоренный заряд аккумуляторной батареи". Когда будут выполнены условия для отключения функции, контрольный блок вместе с этим отключит функцию, а также будет снят аварийный сигнал "ALM 01".

Аварийный сигнал "ALM 01" появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management или через дисплей и кнопки на контрольном блоке.

22.5.4. ALM 02 - HIGH BATTERY VOLTAGE - Высокое напряжение батареи

Контрольный блок контролирует системное напряжение и генерирует аварийный сигнал "ALM 02 — Высокое напряжение батареи", если напряжение становится выше предельного значения напряжения, определяемого заводским значением (57 B \pm 1 B для системы 48 B, 71 B \pm 1 B для системы 60 B), или значением, определяемым администратором в веб-окне приложения Web Based Management. При снижении напряжения на 1 B ниже предельного значения, контрольный блок прекращает генерировать аварийный сигнал "ALM 02".

22.5.5. ALM 03 - LOW BATTERY VOLTAGE - Низкое напряжение батареи

Контрольный блок контролирует системное напряжение и генерирует аварийный сигнал "ALM 03 — Низкое напряжение батареи", если напряжение становится ниже предельного значения напряжения, определяемого заводским значением (51 B ±1 B для системы 48 B, 64 B ±1 B для системы 60 B), или значением, определяемым администратором в веб-окне приложения Web Based Management. При повышении напряжения на 1 B выше предельного значения, контрольный блок прекращает генерировать аварийный сигнал "ALM 03".

22.5.6. ALM 04 – CRITICALLY LOW BATTERY VOLTAGE – Критически низкое напряжение батареи

Контрольный блок контролирует системное напряжение и генерирует аварийный сигнал "ALM 04 — Критически низкое напряжение батареи", если напряжение становится ниже предельного значения напряжения, определяемого заводским значением (44 B \pm 1 B для системы 48 B, 55 B \pm 1 B для системы 60 B), или значением, определяемым администратором в веб-окне приложения Web Based Management. При повышении напряжения на 1 B выше предельного значения, контрольный блок прекращает генерировать аварийный сигнал "ALM 04".

22.5.7. ALM 05 - MAINS FAILURE - Неисправность электросети

Контрольный блок контролирует трехфазное сетевое напряжение и генерирует аварийный сигнал "ALM 05 — Неисправность электросети", если напряжение одной из трех фаз становится ниже напряжения, определяемого заводским значением (163 B ± 1 B) или значением, определяемым администратором в веб-окне приложения Web Based Management, или если напряжение одной из трех фаз становится выше напряжения, определяемого заводским значением (265 B ± 1 B) или значением, определяемым администратором в веб-окне приложения Web Based Management. Когда напряжение становится выше или ниже предельного значения на 10 B, аварийный сигнал "ALM 05" перестает генерироваться. Аварийный сигнал ALM 05 генерируется для каждой фазы сетевого питания отдельно, например, "ALM 05 — Mains failure phase L1". На SNMP V5 контрольный блок передает только один аварийный сигнал "ALM 05 — Mains failure".

Примечание:

В случае переключения на трехфазную сеть 127/230 В переменного тока необходимо через терминал управления или узел управления установить новые предельные значения для генерирования аварийного сигнала неисправности электросети.

22.5.8. ALM 06 - FUSE/CB FAILURE – Неисправность предохранителя/автоматического выключателя

Контрольный блок контролирует состояние всех пробковых предохранителей и автоматических выключателей, встроенных в систему электропитания, которые были администратором путем выполнения функции Конфигурация предохранителей и автоматических выключателей в веб-окне приложения Web Based Management или через дисплей и кнопки на Все предохранители и автоматические выключатели имеют контакты для контрольном блоке. идентификации перегорания или отключения. В случае отключения какого-либо автоматического выключателя или перегорания какого-либо предохранителя, контрольный блок генерирует аварийный сигнал "ALM 06 - Неисправность предохранителя/автоматического выключателя". На терминале техобслуживание или в центре управления администратор может идентифицировать предохранитель или автоматический выключатель, ставший причиной генерирования аварийного сигнала. После устранения неисправности контрольный блок прекращает генерирование аварийного сигнала "ALM 06". В описании аварийного сигнала имеется обозначение предохранителя или автоматического выключателя, например, "ALM 06 - Fuse/CB failure CB.B/LOAD1.CB11", ALM 06 - Fuse/CB failure CB.LSUB1.CB24". На SNMP V5 контрольный блок передает только один аварийный сигнал "ALM 06 -Fuse falling out".

Таблица аварийных сигналов неисправности предохранителя/автоматического выключателя всех секций, используемых в системе электропитания:

Секция статива (шкафа)	Контрольный модуль	Предохранитель/автоматический выключатель.	Примеры аварийных сигналов
MRN	ARG	LF1;LF2;LF3;LF4;BF1;BF2; BF3; BF4; CB1CB24	Fuse/CB failure CB.B/LSUB.LF1; Fuse/CB failure CB. B/LSUB.BF2; Fuse/CB failure CB. B/LSUB.CB12;
FRM, FRN, FRK, FRL, FRP, FRQ	ARMx	CB1CB24	Fuse/CB failure CB.LSUB1.CB12 Fuse/CB failure CB.LSUB4.CB1 Fuse/CB failure CB.LSUB8.CB11

22.5.9. ALM 07 - MODULE FAILURE - Отказ преобразователя

Контрольный блок контролирует состояние всех встроенных выпрямителей, конверторов и инверторов. В случае ошибки генерируется аварийный сигнал "ALM 07 - Отказ преобразователя". На терминале техобслуживание или в центре управления администратор может идентифицировать преобразователь, ставший причиной генерирования аварийного сигнала. После устранения замены преобразователя контрольный блок прекращает генерирование аварийного сигнала "ALM 07". Аварийный сигнал "ALM 07 — Отказ преобразователя" также генерируется контрольным блоком в

Аварииный сигнал "АLM 07 – Отказ преооразователя" также генерируется контрольным олоком в случае потери коммуникации с выпрямителем, у которого встроен микроконтроллер (FMP18.48 и FMP32.48), одновременно генерируется аварийный сигнал "ALM 22 – Несоответствие оборудования системы электропитания". В случае если была изменена оборудованность системы (отсоединение преобразователя), администратор в веб-окне приложения Web Based Management или через дисплей и кнопки на контрольном блоке запускает функцию Конфигурирования преобразователей, в результате чего аварийные сигналы будут сняты.

В описании аварийного сигнала имеется обозначение секции, в которой находится модуль, а также обозначение преобразователя, например, "ALM 07 – Module failure Module.MRP1.POZ3", "ALM 07 – Module failure Module.MRQ2.POZ2".

Ha SNMP V5 контрольный блок передает только один аварийный сигнал "ALM 07 – Fuse falling out".

22.5.10. ALM 08 – AUDIO ALARM DISABLED – Отключение звукового аварийного сигнала

Если звуковой аварийный сигнал заблокирован функцией "AUDIO OFF" в веб-окне приложения Web Based Management, контрольный блок генерирует аварийный сигнал "ALM 08 — Отключение звукового аварийного сигнала". После разблокирования звукового сигнала контрольный блок прекращает генерирование аварийного сигнала "ALM 08".

Аварийный сигнал "ALM 08" появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management.

22.5.11. ALM 09 - FIRE – Пожар

В случае выявления контрольным блоком при помощи пожарного датчика пожара в окружении или на телекоммуникационном оборудовании, генерируется аварийный сигнал "ALM 09 — Пожар". После устранения состояния пожара контрольный блок прекращает генерирование аварийного сигнала "ALM 09".

Аварийный сигнал "ALM 01" появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management и администратор определил вход пожарного датчика.

22.5.12. ALM 10 – TRANSMISSION EQUIPMENT FAILURE – Неисправность оборудования передачи

В случае выявления контрольным блоком аварийного сигнала, передаваемого оборудованием передачи, генерируется аварийный сигнал "ALM 10 — Неисправность оборудования передачи". После устранения неисправности контрольный блок прекращает генерирование аварийного сигнала "ALM 10".

Аварийный сигнал "ALM 10" появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management и администратор определил вход для выявления неисправностей оборудования передачи.

22.5.13. ALM 11 – CRITICALLY HIGH TEMP OF ENVIRONMENT- Критически высокая температура окружения станции или аккумуляторной батареи

Контрольный блок контролирует температуру окружения системы электропитания и аккумуляторных батарей. При выявлении высокой температуры окружения системы или батареи (температурные датчики ТА, ТВ), то есть температура выше заводского значения 40° С или выше температуры, определяемой администратором в веб-окне приложения Web Based Management, генерируется аварийный сигнал "ALM 11 – Критически высокая температура". При понижении температуры на 3° С ниже предельного значения, контрольный блок прекращает генерирование аварийного сигнала "ALM 11".

Аварийный сигнал "ALM 11" появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management или через дисплей и кнопки на контрольном блоке.

160

22.5.14. ALM 12 – CRITICALLY LOW TEMP OF ENVIRONMENT- Критически низкая температура окружения станции или аккумуляторной батареи

Контрольный блок контролирует температуру окружения системы электропитания и аккумуляторных батарей. При выявлении низкой температуры окружения системы или батареи (температурные датчики ТА, ТВ), то есть температура ниже заводского значения 5° С или ниже температуры, определяемой администратором в веб-окне приложения Web Based Management, генерируется аварийный сигнал "ALM 12 — Критически низкая температура". При повышении температуры на 3° С выше предельного значения, контрольный блок прекращает генерирование аварийного сигнала "ALM 12".

Аварийный сигнал "ALM 12" появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management или через дисплей и кнопки на контрольном блоке.

22.5.15. ALM 13, 14, 15, 16 – Проникновение в помещение с телекоммуникационным оборудованием

Проникновение или попытка проникновения в помещение с телекоммуникационным оборудованием контролируется на дверях помещения с системой и на дверях кросса. Переключение любого из четырех переключателей вызывает соответствующий аварийный сигнал. После устранения ошибки контрольный блок прекращает генерирование аварийных сигналов. В системе предусмотрены следующие аварийные сигналы:

- "ALM 13 OPEN DOOR 1 Двери 1 открыты",
- "ALM 14 UNLOCKED DOOR 1 Двери 1 не закрыты на замок",
- "ALM 15 OPEN DOOR 2 Двери 2 открыты",
- "ALM 16 UNLOCKED DOOR 2 Двери 2 не закрыты на замок".

Аварийные сигналы появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management и администратор определил входы аварийных сигналов дверей и замков.

22.5.16. ALM 17 – BATTERY CAPACITY MEASUREMENT – Измерение емкости аккумуляторной батареи

Аварийный сигнал является следствием выполнения измерения емкости батарей. Во время выполнения измерения емкости аккумуляторной батарей контрольный блок генерирует аварийный сигнал "ALM 17 — Измерение емкости аккумуляторной батареи"; аварийный сигнал снимается после окончания или прерывания измерения.

22.5.17. ALM 19 - FLAT RTC BATTERY – Разряженная батарея на RTC (часы реального времени) системы электропитания

С помощью схемы в контрольном блоке ARH выполняется измерение напряжения батареи RTC при включении питания контрольного блока, а затем в регулярных 24-часовых интервалах. Если напряжение батареи при тестировании составляет менее 2,5 В, контрольный блок генерирует аварийный сигнал "ALM 19 — Разряженная батарея на RTC". В случае возникновения аварийного сигнала необходимо заменить батарею, поскольку аварийный сигнал означает, что срок службы батареи истек.

22.5.18. ALM 20 – CRITICALLY HIGH TEMP OF RECTIFIERS - Критически высокая температура выпрямителей

Контрольный блок контролирует температуру окружения выпрямителей. При выявлении высокой температуры в близости выпрямителей (температурный датчик TR), то есть температура выше заводского значения 55° С или выше температуры, определяемой администратором в веб-окне приложения Web Based Management, генерируется аварийный сигнал "ALM 20 – Критически высокая температура выпрямителей". При понижении температуры выпрямителей на 5° С ниже критического значения, контрольный блок прекращает генерирование аварийного сигнала "ALM 20".

Аварийный сигнал "ALM 20" появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management или через дисплей и кнопки на контрольном блоке и если в системе встроен температурный датчик TR - опция.

22.5.19. ALM 21 – SYMMETRY FAILURE – Критическая асимметрия аккумуляторов батареи

Контрольный блок ARH получает от блоков измерения напряжения аккумуляторов батареи ARI (максимально 16) напряжение отдельных аккумуляторов. Максимально может быть 8 блоков.

Контрольный блок генерирует аварийный сигнал "ALM 21 — Критическая асимметрия аккумуляторов баатреи", когда напряжение отдельного аккумулятора отклоняется более чем на 5 % от рассчитанного среднего значения.

Процент отклонения 5 % является заводским значением, он также может быть установлен администратором в веб-окне приложения Web Based Management. При понижении процента отклонения на одну третью предельного значения, контрольный блок прекращает генерирование аварийного сигнала "ALM 21".

Контрольный блок может контролировать до шестнадцати аккумуляторных батарей. На терминале техобслуживание или в центре управления администратор может идентифицировать батарею, ставшую причиной генерирования аварийного сигнала. В описании аварийного сигнала имеется обозначение батареи, в которой была выявлена асимметрия, например, "ALM 21 – SYMMETRY FAILURE BATT01.BLOCK7".

Аварийный сигнал "ALM 21" появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management или через дисплей и кнопки на контрольном блоке.

Ha SNMP V5 контрольный блок передает только один аварийный сигнал "ALM 21 – SYMMETRY FAILURE OF BATTERY BLOCK.

22.5.20. ALM 22 - INCONSISTENT EQUIPMENT - Несоответствие оборудования системы электропитания

Если в систему будет добавлен или заменен преобразователь, контрольный блок при идентификации выявит преобразователь с другим обозначением (type), то есть новый преобразователь, в результате чего будет сгенерирован аварийный сигнал "ALM 22 — Несоответствие оборудования системы электропитания". Если администратор согласен с изменением оборудования, то он должен в вебокне приложения Web Based Management или через дисплей и кнопки на контрольном блоке запустить функцию Конфигурация преобразователей, в результате чего контрольный блок будет считать новое состояние оборудования правильным и аварийный сигнал "ALM 22" будет снят.

При отключении выпрямителя контрольный блок генерирует различные аварийные сигналы в зависимости от типа выпрямителя. Выпрямители типа PMP11.60 и PMP13.48, у которых нет микроконтроллера, обеспечивают, что контрольный блок выявляет отключение выпрямителя. В этом случае контрольный блок генерирует аварийный сигнал "ALM 22". При выпрямителях типа FMP18.48 и FMP32.48, у которых встроен микроконтроллер, в случае отсоединения преобразователя контрольный блок генерирует аварийный сигнал "ALM 07 — Отказ преобразователя" и аварийный сигнал "ALM 22".

В описании аварийного сигнала имеется обозначение преобразователя и секции, в которой он находится.

Аварийный сигнал "ALM 22" появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management или через дисплей и кнопки на контрольном блоке.

Ha SNMP V5 контрольный блок передает только один аварийный сигнал "ALM 22 – INCONSISTENT EQUIPMENT.

22.5.21. ALM 23 - FAILURE OF RELAY – Неисправность реле LVD

Если контрольным блоком будет выявлено выключение реле LVD, то будет сгенерирован аварийный сигнал "ALM 23 — Неисправность реле LVD". После устранения неисправности контрольный блок прекращает генерирование аварийного сигнала "ALM 23". В описании аварийного сигнала имеется обозначение реле LVD, в котором была выявлена неисправность, например, "ALM 23 — FAILURE OF RELAY B/LSUB1.LVD2"

Примечание!

Контрольный блок передает SNMP V5 три различных аварийных сигнала, а именно: в случае неисправности реле LVD1 аварийный сигнал "ALM 23 – Неисправность батарейного реле LVD1", при неисправности реле LVD2 аварийный сигнал "ALM 24 – Неисправность батарейного реле или реле нагрузки LVD2" и в случае неисправности реле LVD3 аварийный сигнал "ALM 36 – Неисправность реле LVD3".

22.5.22. ALM 24 - FAILURE OF BATTERY OR LOAD RELAY 2 – Неисправность батарейного реле или реле нагрузки LVD2

Смотри примечание в пункте ALM 23 FAILURE OF RELAY – Неисправность реле LVD!

22.5.23. ALM 25 - MAINTENANCE CHARGING – Индивидуальный подзаряд аккумуляторной батареи

Когда администратор переключает аккумуляторные батареи, подключенные через реле LVD, в режим отдельного подзаряда батареи более высоким напряжением, контрольный блок генерирует аварийный сигнал "ALM 25 - Индивидуальный подзаряд аккумуляторной батареи". После отключения индивидуального подзаряда батареи контрольный блок прекращает генерирование аварийного сигнала "ALM 25". В описании аварийного сигнала имеется обозначение батареи, на которой производится индивидуальный подзаряд, например, "ALM 25 — MAINTENANCE CHARGING BATT1".

Данный аварийный сигнал появляется лишь в случае, если администратор обеспечит, что аварийный вход индивидуального подзаряда батареи 1 блока ARG при переключении батареи в режим индивидуального подзаряда подключен к земле системы электропитания MR. Точки подключения блока ARG определены в главе *Описание системы*.

Примечание!

Контрольный блок передает SNMP V5 три различных аварийных сигнала, а именно: в случае индивидуального подзаряда батареи, подключенной через реле LVD1, генерируется аварийный сигнал "ALM 25 — Индивидуальный подзаряд аккумуляторной батареи 1", а при индивидуальном подзаряде батареи, подключенной через реле LVD2 генерируется аварийный сигнал "ALM 26 — Индивидуальный подзаряд аккумуляторной батареи 2", при индивидуальном подзаряде батареи, подключенной через реле LVD3, генерируется аварийный сигнал "ALM 37 — Индивидуальный подзаряд аккумуляторной батареи 3".

22.5.24. ALM 26 - MAINTENANCE CHARGING – Индивидуальный подзаряд аккумуляторной батареи 2

Смотри примечание в ALM 25 - MAINTENANCE CHARGING – Индивидуальный подзаряд аккумуляторной батареи!

22.5.25. ALM 27 - GENERATOR FAILURE - Неисправность генератора

Если контрольным блоком через вход аварийной сигнализации будет выявлена неисправность генератора, то будет сгенерирован аварийный сигнал "ALM 27 — Неисправность генератора". После устранения неисправности контрольный блок прекращает генерирование аварийного сигнала "ALM 27".

Аварийный сигнал "ALM 27" появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management и администратор определил вход аварийной сигнализации.

22.5.26. ALM 28 - FREQUENCY FAILURE – Ошибка сетевой частоты

Контрольный блок контролирует сетевое напряжение (фаза L1). В случае если измеренная частота выше заводского значения 52,5 Гц или выше значения, определяемого администратором в веб-окне приложения Web Based Management, а также если частота ниже заводского значения 47,5 Гц или ниже значения, определяемого администратором в веб-окне приложения Web Based Management, генерируется аварийный сигнал "ALM 28 — Ошибка сетевой частоты". Когда частота становится выше или ниже предельного значения на 1 Гц, аварийный сигнал "ALM 28" снимается.

Аварийный сигнал "ALM 28" появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management или через дисплей и кнопки на контрольном блоке.

Примечание:

В случае переключения на трехфазную сеть 127/230 В переменного тока 60 Гц необходимо через терминал управления или узел управления установить новые предельные значения для генерирования аварийного сигнала ошибки сетевой частоты.

22.5.27. ALM 29 – FAILURE OF AIR-CONDITIONER 1 – Неисправность кондиционера 1

Если контрольным блоком через вход аварийной сигнализации будет выявлена неисправность кондиционера 1, то будет сгенерирован аварийный сигнал "ALM 29 — Неисправность кондиционера 1". После устранения неисправности контрольный блок прекращает генерирование аварийного сигнала "ALM 29".

Аварийный сигнал "ALM 29" появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management и администратор определил вход аварийной сигнализации.

22.5.28. ALM 30 – FAILURE OF AIR-CONDITIONER 2 – Неисправность кондиционера 2

Если контрольным блоком через вход аварийной сигнализации будет выявлена неисправность кондиционера 2, то будет сгенерирован аварийный сигнал "ALM 30 — Неисправность кондиционера 2". После устранения неисправности контрольный блок прекращает генерирование аварийного сигнала "ALM 30".

Аварийный сигнал "ALM 30" появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management и администратор определил вход аварийной сигнализации.

22.5.29. ALM 31 - ALM 34 – USER-DEFINED ALARM – Аварийные сигналы, определяемые пользователем

Контрольный блок ARH передает эти аварийные сигналы на SNMP V5, поскольку последний не поддерживает аварийные сигналы ALM 40 - ALM 64.

Аварийный сигнал "ALM 31 — Аварийный сигнал, определяемый пользователем: х" передается на SNMP V5, когда активен один или несколько аварийных сигналов "ALM 40" - "ALM 45". Вместо "х" в названии аварийного сигнала будут выведены названия всех активных аварийных сигналов "ALM 40" - "ALM 45", разделенные точкой с запятой «;». Максимально может быть выведено 60 знаков. Если названия активных аварийных сигналов состоят из большего количества знаков, максимально будет отображено 60 знаков и три точки. На контрольном блоке и в центре управления версии 6 (SNMP V6) все аварийные сигналы отображается по отдельности, с названием, определенным администратором, например, "ALM 42 — Ошибка соединительной линии".

Аварийный сигнал "ALM 32 — Аварийный сигнал, определяемый пользователем: х" передается на SNMP V5, когда активен один или несколько аварийных сигналов "ALM 46 " - "ALM 51". Вместо "х" в названии аварийного сигнала будут выведены названия всех активных аварийных сигналов "ALM 46" - "ALM 51", разделенные точкой с запятой «;». Максимально может быть выведено 60 знаков. Если названия активных аварийных сигналов состоят из большего количества знаков, максимально будет отображено 60 знаков и три точки. На контрольном блоке и в центре управления версии 6 (SNMP V6) все аварийные сигналы отображается по отдельности, с названием, определенным администратором.

Аварийный сигнал "ALM 33 — Аварийный сигнал, определяемый пользователем: х" передается на SNMP V5, когда активен один или несколько аварийных сигналов "ALM 52 " - "ALM 57". Вместо "х" в названии аварийного сигнала будут выведены названия всех активных аварийных сигналов "ALM 52 " - "ALM 57", разделенные точкой с запятой «;». Максимально может быть выведено 60 знаков. Если названия активных аварийных сигналов состоят из большего количества знаков, максимально будет отображено 60 знаков и три точки. На контрольном блоке и в центре управления версии 6 (SNMP V6) все аварийные сигналы отображается по отдельности, с названием, определенным администратором.

Аварийный сигнал "ALM 34 — Аварийный сигнал, определяемый пользователем: х" передается на SNMP V5, когда активен один или несколько аварийных сигналов "ALM 58 " - "ALM 64". Вместо "х" в названии аварийного сигнала будут выведены названия всех активных аварийных сигналов "ALM 58 " - "ALM 64", разделенные точкой с запятой «;». Максимально может быть выведено 60 знаков. Если названия активных аварийных сигналов состоят из большего количества знаков, максимально будет отображено 60 знаков и три точки. На контрольном блоке и в центре управления версии 6 (SNMP V6) все аварийные сигналы отображается по отдельности, с названием, определенным администратором.

22.5.30. ALM35 - GENERATOR RUNNING – Генератор работает

Если контрольным блоком через аварийный вход выявлена работа генератора, то будет сгенерирован аварийный сигнал "ALM 35 – Генератор работает". После устранения неисправности контрольный блок прекращает генерирование аварийного сигнала "ALM 35".

Аварийный сигнал "ALM 35" появляется только, если функция аварийного сигнала была предварительно разблокирована в веб-окне приложения Web Based Management и администратор определил вход аварийной сигнализации.

22.5.31. ALM 23 - FAILURE OF RELAY - Неисправность реле LVD3

Смотри примечание в пункте ALM 23 FAILURE OF RELAY – Неисправность реле LVD!

22.5.32. ALM 37 - MAINTENANCE CHARGING OF BATTERY 3 – Индивидуальный подзаряд аккумуляторной батареи 3

Смотри примечание в ALM 25 - MAINTENANCE CHARGING – Индивидуальный подзаряд аккумуляторной батареи!

22.5.33. ALM 38 - Communication failure - Потеря коммуникации

Контрольный блок генерирует аварийный сигнал "ALM 38 — Потеря коммуникации" при потере коммуникации с одним из блоков ARG, ARI, ARJ, ARK, ARL или ARM, с которым контрольный блок уже коммуницировал. В описании аварийного сигнала имеется обозначение блока, например, 'ALM 38 — Потеря коммуникации ARK3".

Аварийный сигнал автоматически снимается, если коммуникация восстанавливается. Если произошло изменение оборудованности системы, необходимо выполнить функцию конфигурации оборудования системы электропитания. Смотри главу Конфигурация системы электропитания!

Контрольный блок передает на SNMP V6 только один аварийный сигнал с названием "ALM 38 – Communication failure of any ARX unit – Потеря коммуникации с блоком ARX".

Контрольный блок передает на SNMP V5 только один аварийный сигнал "ALM 38 - Communication failure - Потеря коммуникации".

22.5.34. ALM39 - POWER-SUPPLY SHUT-OFF WARNING – Уведомление о выключении системы

Аккумуляторные батареи защищены от глубокого разряда при помощи реле LVD, которые управляются контрольным блоком системы или аналоговой схемой.

Контрольный блок генерирует два аварийных сигнала, указывающих на разрядку аккумуляторных батарей. Это аварийные сигналы "ALM 03 – Низкое напряжение батареи" и аварийный сигнал "ALM 04 - "Критически низкое напряжение батареи".

Если функция аварийного сигнала "ALM39 — Уведомление о выключении питания" была предварительно разблокирована, контрольный блок ARH при достижении условий для выключения реле LVD1 (независимо от условий выключения реле LVD2 и реле LVD3) генерирует аварийный сигнал "ALM39 — Уведомление о выключении питания" и выключение реле LVD1 откладывается на 1 минуту.

Если функция аварийного сигнала «ALM39» заблокирована, реле LVD1 выключается без задержки.

Контрольный блок не передает данный аварийный сигнал на SNMP V5.

22.5.35. ALM 40 - ALM 64 – USER-DEFINED ALARM – Аварийные сигналы, определяемые пользователем

Контрольный блок генерирует аварийный сигнал только, если аварийный сигнал был предварительно разблокирован и настроен.

Администратор настраивает пользовательские аварийные сигналы "ALM 40" - "ALM 64" в веб-окне приложения Web Based Management. Перед разблокировкой аварийного сигнала необходимо определить:

- тип входа аварийной сигнализации (цифровой, аналоговый) и
- определить вход аварийной сигнализации.

Администратор может изменять имена аварийных сигналов.

Данные аварийные сигналы передаются на SNMP V5 особым способом. Смотри примечание ALM 31 - ALM 34 – *USER-DEFINED ALARM* – Аварийные сигналы, определяемые пользователем!

22.5.36. Передача аварийных сигналов на выходы реле

Администратор в веб-окне приложения Web Based Management может для каждого аварийного сигнала выбрать один или несколько реле, которые будут управляться при генерировании аварийного сигнала. Имеется шесть реле, которые находятся в контрольном блоке ARH, и реле блоков управления реле ARJ, которые подключены к контрольному блоку ARH. Контакты реле защищены элементом PTC сопротивлением 125 Ом при 25° С.

22.5.37. Передача аварийных сигналов на узел управления

Аварийные сигналы передаются на узел управления по протоколу SNMP. Передача аварийных сигналов различается в зависимости от того, подключена ли система электропитания к узлу управления, который использует протокол SNMP версии V5 или V6.

22.6. Функции контроля

22.6.1. Ежемесячная статистика измеренных значений

На основе измеренных значений в памяти контрольного блока ARH сохраняются следующие средние, максимальные и минимальные дневные измеренные значения:

- U системное напряжение,
- IL ток нагрузки,
- ІВ ток аккумуляторной батареи,
- UL1, UL2, UL3 сетевое напряжение,
- ТА температура окружения,
- ТВ температура аккумуляторной батареи,
- INPUT 11, INPUT 12 INPUT 81, INPUT 82 аналоговые входы.

Администратор может посмотреть статистику за последние 32 дня в веб-окне приложения Web Based Management. Описание дано в главе *Контроль системы MPS через терминал управления или узел управления*.

22.6.2. Ежедневная статистика измеренных значений

Но основе измеренных значений в памяти контрольного блока ARH сохраняются следующие измеренные значения (измерения выполняются в 10-минутных интервалах):

- U системное напряжение,
- IL ток нагрузки,
- ІВ ток аккумуляторной батареи,
- UL1, UL2, UL3 сетевое напряжение,
- ТА температура окружения,
- ТВ температура аккумуляторной батареи,
- INPUT 11, INPUT 12 INPUT 81, INPUT 82 аналоговые входы.

Администратор может посмотреть статистику за предыдущий и сегодняшний день в веб-окне приложения Web Based Management. Описание дано в главе Контроль системы MPS через терминал управления или узел управления.

22.6.3. Статистика зарядки и разрядки аккумуляторных батарей

Контрольный блок обеспечивает графическое отображение последних пяти циклов разрядки и зарядки батареи. На основе измеренных значений системного напряжения и напряжения отдельных аккумуляторов, в памяти контрольного блока сохраняется напряжение с зависимостью от времени. Данные собираются в заранее определенных временных интервалах.

Администратор может посмотреть статистику в веб-окне приложения Web Based Management. Описание дано в главе *Контроль системы MPS через терминал управления или узел управления*.

22.6.4. Хронология событий системы электропитания и окружения

Контрольный блок сохраняет информацию о регистрации и снятии всех аварийных сигналов, об изменении напряжения системы и температурного коэффициента напряжения, а также о блокировке и разблокировке функций и аварийных сигналов. Информация включает в себя дату и время события.

Администратор может посмотреть хронологию в веб-окне приложения Web Based Management. Описание дано в главе *Контроль системы MPS через терминал управления или узел управления*.

22.7. Системные функции

22.7.1. Загрузка новой версии программного обеспечения

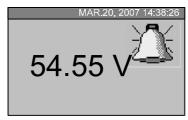
Администратор в веб-окне приложения Web Based Management может загрузить новую версию программного обеспечения в контрольный блок системы электропитания.

22.7.2. Управление системой MPS при помощи дисплея и кнопок

Управление выполняется при помощи меню на дисплее и трех кнопок. Описание дано в главе Управление системой MPS при помощи дисплея и кнопок на контрольном блоке.

22.7.3. Управление системой через веб-браузер

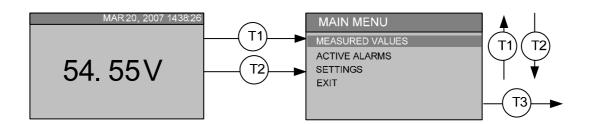
Описание дано в главе Контроль системы MPS через терминал управления или узел управления.


23. Управление системой MPS посредством дисплея контрольного блока

Контроль и управление системой электропитания выполняется на английском языке.

23.1. Основное отображение на дисплее

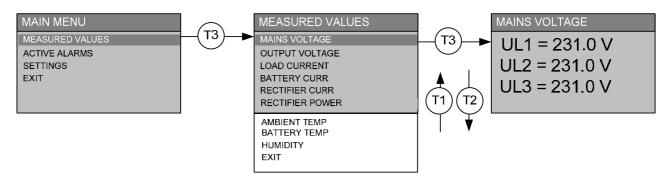
В основном окне отображается выходное напряжение системы. В случае появления аварийного сигнала в окне начинает мигать символ аварийного сигнала (мигающий колокольчик).

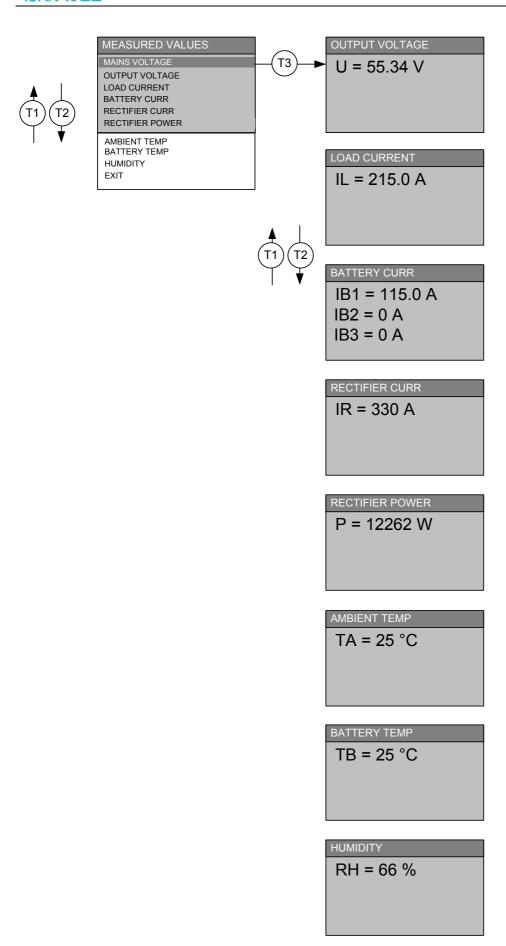


В меню "System settings" (Настройки системы) пользователь может выбрать другое основное отображение - см. раздел Настройка дисплея.

Рядом с дисплеем расположены три кнопки Т1 (↑), Т2 (↓) и Т3 (←). Кнопка Т1 служит для перемещения по меню вверх, кнопка Т2 – для перемещения вниз, а кнопка Т3 – для подтверждения выбранного значения.

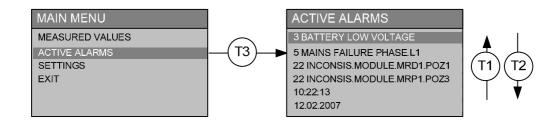
В случае появления основного отображения на дисплее кнопка Т3 служит для выключения звукового аварийного сигнала.


Путем нажатия на кнопку T1 или T2 на дисплей выводятся названия трех главных меню: MEASURED VALUES, ACTIVE ALARMS и SETTINGS, а также возможность выхода EXIT. При помощи кнопок T1 и T2 можно перемещаться вверх и вниз по меню. При этом выбранное меню нужно обозначить и подтвердить выбор нажатием на кнопку T3.



23.2. Меню MEASURED VALUES - вывод измеренных значений

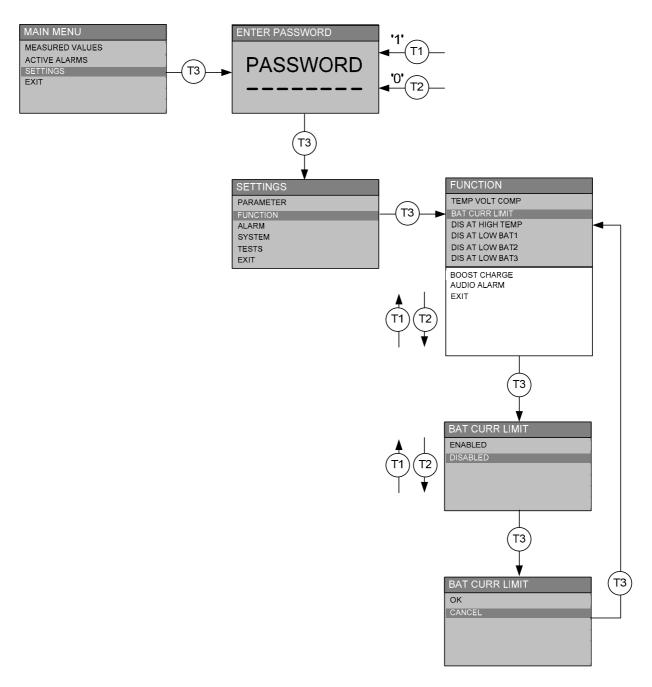
Измерение выполняется при помощи аналого-цифрового преобразователя и микропроцессора. Измеренные значения выводятся по запросу пользователя. Меню MEASURED VALUES открывается из основного меню. Путем нажатия кнопки T1 или T2 выбирается меню и подтверждается выбор нажатием на кнопку T3, после чего открывается меню MEASURED VALUES, в котором можно просмотреть измеренные значения. На дисплей выводится список измеряемых значений. При помощи кнопок T1 и T2 можно перемещаться по списку вверх и вниз. Выбранный измеряемый параметр выделяется и выбор подтверждается нажатием на кнопку T3. На дисплей выводятся измеренные значения этого параметра. При помощи кнопок T1 и T2 можно перемещаться вверх и вниз по списку измеренных значений. Нажатием на кнопку T3 система возвращаемся в MAIN MENU. После выбора и подтверждения пункта меню EXIT) система возвращается в основное отображение или же это происходит автоматически, если в течение 30 секунд не будет нажата какая-либо из кнопок.



23.3. Меню ACTIVE ALARMS – вывод на дисплей аварийных сигналов

В зависимости от значений измеренных электрических величин и состояния датчиков аварийных сигналов микропроцессор генерирует аварийный сигнал. В случае появления аварийного сигнала на основном отображении выводится символ аварийного сигнала и по запросу пользователя выводятся описания присутствующих в настоящий момент активных аварийных сигналов. Если на дисплее присутствует основное отображение, то пользователь путем нажатия кнопки Т1 или Т2 переходит в меню MAIN MENU, выбирает меню ACTIVE ALARMS при помощи кнопки Т1 или Т2 и подтверждает выбор нажатием на кнопку Т3. На дисплей выводятся все активные аварийные сигналы, дата и время. Переход от одного к другому активному аварийному сигналу выполняется при помощи кнопок Т1 и Т2, а при помощи кнопки Т3 система возвращается в главное меню. Если в течение 30 секунд не нажимается какая-либо кнопка, то система автоматически возвращается в основное отображение.

23.4. Меню SETTINGS – настройка системы


При помощи кнопок и дисплея, размещенных на передней стороне контрольного блока, можно выполнять:

- настройку выходного напряжения системы;
- настройку температурного коэффициента напряжения батареи;
- настройку емкости батареи 1;
- настройку емкости батареи 2;
- настройку емкости батареи 3;
- блокировку/разблокировку:
 - температурной компенсации напряжения;
 - ограничения зарядного тока батареи;
 - ускоренного заряда батарей;
 - некоторых аварийных сигналов;
- автоматическую конфигурацию оборудованности выпрямителей, предохранителей и автоматических выключателей, дополнительных блоков;
- настройку параметров, необходимых для удаленного управления;
- настройку дисплея.

Если на дисплее присутствует основное отображение, то для перехода в меню MAIN MENU пользователь должен нажать кнопку T1 или T2, затем при помощи этих кнопок выбрать меню "SETTINGS" в списке меню и подтвердить выбор нажатием на кнопку T3. Перед настройкой вышеперечисленных параметров и функций системы необходимо ввести пароль.

В том случае, если с терминала или узла управления в системе уже зарегистрирован (работает) администратор, то пользователь получает отказ в возможности настройки системы и на дисплей выводится сообщение: "ACCESS DENIED! Account in in use!"

После нажатия на кнопку Т3 в верхней части дисплея выводится надпись PASSWORD, а в нижней части дисплея – восемь черточек "______", где нужно ввести пароль, состоящий из восьми двоичных знаков. Заводская настройка пароля - "00000000". Пароль вводится при помощи кнопок Т1 и Т2. Нажатие на верхнюю кнопку Т1 означает логическую "1", а нажатие на нижнюю кнопку Т2 - погический "0" и переход к следующему знаку. Пароль подтверждается нажатием на кнопку Т3. При вводе неправильного пароля на дисплее снова появляется отображение для ввода пароля. Если в течение 30 секунд не будет нажата какая-либо кнопка, то система возвращается в основное отображение. Если введен правильный пароль, то на дисплей построчно выводятся меню. Переход от одного к другому меню в списке выполняется при помощи кнопок Т1 и Т2. Выбранное меню выделяется и выбор подтверждается нажатием на кнопку Т3. Кнопка Т1 служит для перемещения по списку меню вниз, а кнопка Т2 — для перемещения вверх. После выбора и подтверждения пункта меню ЕХІТ система возвращается в основное отображение. Если в течение 30 секунд не будет нажата какая-либо из кнопок, то система автоматически возвращается в основное отображение.

В том случае, если с терминала или узла управления в системе уже зарегистрирован (работает) администратор, то пользователь получает отказ в возможности настройки системы и на дисплей выводится сообщение: "ACCESS DENIED! Account in use!"

Пароль можно произвольно менять на терминале управления, подключенном к контрольному блоку Ethernet-порта (разъем RJ/8 на лицевой панели контрольного блока).

На дисплей выводятся следующие меню:

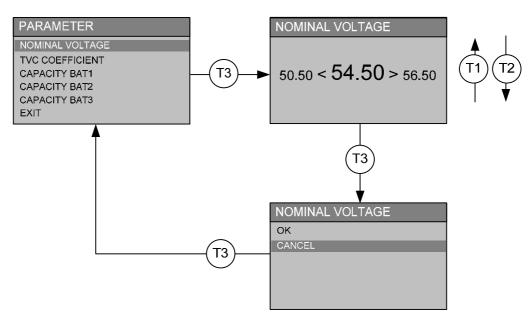
1	PARAMETER (ПАРАМЕТР)	Настройка рабочих параметров системы электропитания MPS
2	FUNCTION (ФУНКЦИЯ)	Блокировка/разблокировка некоторых функций системы и включение/выключение
		внешних устройств
3	ALARM (АВАР. СИГНАЛ)	Блокировка/разблокировка некоторых аварийных сигналов системы
4	SYSTEM (CUCTEMA)	Настройка удаленного управления дисплеем и временем
5	TESTS (ТЕСТЫ)	Тестирование звукового аварийного сигнала и вентиляторов
6	ЕХІТ (ВЫХОД)	Конец настройки системы

Каждое меню имеет свои пункты меню. Пункты меню выводятся на дисплей путем выбора меню и подтверждения выбора путем нажатия на кнопку Т3. Переход от одного пункта меню к другому выполняется также как и в случае меню. После выбора и подтверждения пункта меню EXIT система возвращается в основное отображение. Если в течение 30 секунд не будет нажата какая-либо кнопка, то настройка системы автоматически заканчивается и на дисплее выводится основное отображение.

23.4.1. Меню PARAMETER

Меню имеет следующие пункты меню:

1	NOMINAL VOLTAGE (НОМИНАЛЬНОЕ	Настройка номинального выходного напряжения выпрямителей
	НАПРЯЖЕНИЕ)	
2	TVC COEFFICIENT (КОЭФФИЦИЕНТ TVC)	Настройка температурного коэффициента напряжения для
		компенсации напряжения
3	САРАСІТУ ВАТ1 (ЕМКОСТЬ БАТАРЕИ 1)	Настройка емкости батареи 1
4	САРАСІТУ ВАТ2 (ЕМКОСТЬ БАТАРЕИ 2)	Настройка емкости батареи 2
5	САРАСІТУ ВАТЗ (ЕМКОСТЬ БАТАРЕИ З)	Настройка емкости батареи 3
6	ЕХІТ (ВЫХОД)	Выход из меню


23.4.1.1. Настройка выходного напряжения выпрямителей

Настройка напряжения выполняется в первом пункте меню "NOMINAL VOLTAGE", выбор которого подтверждается кнопкой Т3. На дисплей выводятся установленные в настоящее время значения параметров. При каждом нажатии на одну из кнопок (Т1 – для увеличения напряжения, T2 – для уменьшения напряжения) в течение менее одной секунды напряжение системы увеличивается или уменьшается на напряжение – U = 10 мВ.

При непрерывном нажатии на кнопку Т1 или Т2 напряжение будет увеличиваться или уменьшаться на 10 мВ каждые 500 мс времени удерживания кнопки в нажатом состоянии. По истечении пяти секунд напряжение уменьшается или увеличивается на 50 мВ. Настройка напряжения может выполняться в допустимых пределах (от 50,0 В до 56,0 В для системы 48 В и от 63 В до 70,5 В для системы 60 В). Для выхода из пункта меню, служащего для настройки напряжения, необходимо нажать кнопку Т3. На дисплее предлагается возможность подтверждения выбранного значения (ОК) или отмены изменения значений параметров (CANCEL). При помощи кнопки Т1 или Т2 производится выбор желаемого значения, а при помощи кнопки Т3 этот выбор подтверждается. После этого система возвращается в пункт меню NOMINAL VOLTAGE. Система начинает настраивать выходное напряжение.

Если в течение 30 секунд не будет нажата какая-либо из кнопок, то настройка выходного напряжения выпрямителей автоматически завершается и система возвращается в основное отображение.

23.4.1.2. Настройка температурного коэффициента напряжения для компенсации напряжения

Настройка выполняется во втором пункте меню 'TVC COEFFICIENT', подтверждаемом нажатием на кнопку Т3. На дисплей выводится настроенное в настоящий момент значение. При каждом нажатии на одну из кнопок (Т1- для увеличения коэффициента, T2- для уменьшения коэффициента) в течение менее одной секунды происходит изменение значения температурного коэффициента напряжения батареи на 0.01~ В/ $^{\circ}$ С. Настройка температурного коэффициента напряжения батареи возможна в допустимых пределах (от 0.05~ В/ $^{\circ}$ С до 0.20~ В/ $^{\circ}$ С).

Для выхода из пункта меню, служащего для настройки температурного коэффициента батареи, необходимо нажать на кнопку Т3. На дисплее наряду с выбранным значением предлагается возможность подтверждения этого значения (ОК) или отмены изменения значения (CANCEL). При помощи кнопки Т1 или Т2 выбирается желаемое значение, а при помощи кнопки Т3 этот выбор подтверждается. Система возвращается в пункт меню "TVC COEFFICIENT". Система начинает выполнять компенсацию выходного напряжения.

Если в течение 30 секунд в пункте меню не будет нажата какая-либо из кнопок, то настройка температурного коэффициента напряжения батареи автоматически завершается и на дисплей выводится основное отображение.

23.4.1.3. Настройка емкости батареи

Настройка емкости батареи выполняется в третьем ("CAPACITY BAT 1"), четвертом ("CAPACITY BAT 2") или пятом ("CAPACITY BAT 3 ") пункте меню, выбор которого подтверждается кнопкой Т3. На дисплей выводится установленное в настоящее время значение.

При каждом нажатии на одну из кнопок (Т1 – для увеличения напряжения, Т2 – для уменьшения напряжения) в течение менее одной секунды происходит изменение емкости батареи на 0,1 Ач.

При непрерывном нажатии на кнопку Т1 или Т2 первые пять секунд емкость батареи будет увеличиваться или уменьшаться на 0,1 Ач через каждые 500 мс времени удержания кнопки в нажатом состоянии. По истечении пяти секунд этот шаг увеличивается до 1 Ач, а по истечении следующих пяти секунд – до 10 Ач. Настройка емкости батареи возможна в допустимых пределах (от 0,1 Ач до 9999,9 Ач).

Для выхода из пункта меню настройки емкости батареи необходимо нажать кнопку Т3. На дисплее наряду с выбранным значением предлагается возможность подтверждения этого значения (ОК) или отмены изменения значения (CANCEL). При помощи кнопки Т1 или Т2 выбирается желаемое значение, а при помощи кнопки Т3 этот выбор подтверждается. Система возвращается в пункт меню «CAPACITY BAT1».

Если в течение 30 секунд в пункте меню не будет нажата какая-либо из кнопок, то ввод емкости батареи автоматически завершается и на дисплей выводится основное отображение.

23.4.2. Меню «FUNCTION»

Меню имеет следующие пункты меню:

	Название пункта меню	Тип блокировки/разблокировки	Заводская настройка
1	TEMP VOLTAGE COMP	Температурная компенсация напряжения	ENABLED
2	BATT CURR LIMIT	Ограничение тока заряда батареи	ENABLED
3	BOOST CHARGE	Ускоренный заряд батареи	DISABLED
4	AUDIO ALARM	Звуковой аварийный сигнал	ENABLED
5	EXIT	Выход из меню	

Порядок блокировки/разблокировки функций:

Нажатием на кнопку Т1 или Т2 выбирается пункт меню из вышеприведенной таблицы. Выбранное меню выделяется и выбор подтверждается нажатием на кнопку Т3. На дисплее предлагается возможность ее блокировки (DISABLED) и разблокировки (ENABLED). При этом установленное в настоящее время значение выделено. Нажатием на кнопку Т1 или Т2 выбирается одна из возможностей и выбор подтверждается нажатием на кнопку Т3. На дисплее предлагается возможность подтверждения этого значения (ОК) или отмены изменения значения (CANCEL). Затем система возвращается в соответствующий пункт меню.

Если в течение 30 секунд в каком-либо пункт меню не будет нажата какая-либо из кнопок, то ввод изменений автоматически завершается, изменение не выполняется и на дисплей выводится основное отображение.

Для выхода из меню "FUNCTION" требуется нажать кнопку Т3 в пункте меню "EXIT" .

23.4.3. Меню ALARM

Меню имеет следующие пункты меню:

	Название пункта меню	Тип аварийного сигнала	Заводская установка
1	BOOST CHARGING	Ускоренный заряд батарей	DISABLED
2	CRITIC HIGH TEMP	Критически высокая температура	DISABLED
3	CRITIC LOW TEMP	Критически низкая температура	DISABLED
4	HIGH TEMP OF RECT	Критически высокая температура выпрямителей	DISABLED
5	SYMMETRY OF BAT	Критическая асимметрия аккумуляторов	DISABLED
6	INCONSISTANT EQ	Несоответствующее оборудование	DISABLED
7	FREQUENCY FAIL	Неправильная сетевая частота	DISABLED
8	EXIT	Выход из меню	

Порядок блокировки/разблокировки функций:

Нажатием на кнопку Т1 или Т2 выбирается один из пунктов меню, перечисленных в вышеприведенной таблице. Выбранное меню выделяется. Выбор подтверждается нажатием на кнопку Т3. Наряду с выбранным аварийным сигналом на дисплее предлагается возможность блокировки (DISABLED) и разблокировки (ENABLED) аварийного сигнала. При этом текущая настройка обозначена. При помощи кнопки Т1 или Т2 выбирается одна из возможностей, выбор подтверждается нажатием на кнопку Т3. На дисплее наряду с выбранным значением предлагается возможность подтверждения этого значения (OK) или отмены изменения значения (CANCEL). При помощи кнопки Т1 или Т2 выделяется желаемое значение и выбор подтверждается нажатием на кнопку Т3. Затем система возвращается в соответствующий пункт меню.

Если в течение 30 секунд в каком-либо пункте меню не будет нажата какая-либо из кнопок, то ввод изменений автоматически завершается, изменение не выполняется и на дисплей выводится основное отображение.

Для выхода из меню "ALARM" требуется нажать кнопку Т3 в пункте меню "EXIT".

23.4.4. Меню SYSTEM

Меню имеет следующие пункты меню:

1	AUTOCONFIG	Автоконфигурация выпрямителей, предохранителей и автоматических выключателей, дополнительных блоков (ARG, ARI, ARJ, ARK, ARL, ARM)
2	DISPLAY	Настройка дисплея
3	CONNECTION TYPE	Настройка соединений удаленного управления
4	IP ADDRESS	Установка ІР-адреса
5	SW VERSION	Вывод обозначения версии программного пакета
6	U CALIBRATION	Калибровка измерителя системного напряжения
7	EXIT	Выход из меню

Для выхода из меню 'SYSTEM' необходимо нажать кнопку Т3 в пункте меню EXIT или автоматически, если в течение 30 секунд не будет нажата какая-либо из кнопок.

23.4.4.1. Пункт меню "AUTOCONFIG"

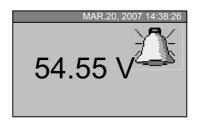
Автоконфигурается выполняется в первом пункте меню "AUTOCONFIG", выбор которого подтверждается нажатием на кнопку Т3. На дисплей выводятся три возможности:

- MODULES (автоконфигурация преобразоователей),
- FUSES (автоконфигурация предохранителей и автоматических выключателей),
- UNITS (автоконфигурация дополнительных блоков).

Путем нажатия на кнопку Т1 или Т2 производится выбор конфигурации. Выбор подтверждается нажатием на кнопку Т3. На дисплее предлагается возможность подтверждения этой конфигурации (ОК) или отмены изменения значения (CANCEL). При помощи кнопки Т1 или Т2 выделяется желаемое значение и выбор подтверждается нажатием на кнопку Т3. Затем система возвращается в соответствующий пункт меню.

Если в течение 30 секунд в каком-либо пункте меню не будет нажата какая-либо из кнопок, то ввод изменений автоматически завершается, изменение не выполняется и на дисплей выводится основное отображение.

23.4.4.2. Пункт меню "DISPLAY"


Пункт меню имеет следующие пункты меню:

1	MAIN WINDOW (ОСНОВНОЕ ОТОБРАЖЕНИЕ)	Настройка основного окна
2	LIGHTING (ПОДСВЕТКА)	Настройка подсветки
3	ЕХІТ (ВЫХОД)	Выход из меню

Настройка основного окна выполняется в первом пункте меню "MAIN WINDOW", выбор которого подтверждается нажатием на кнопку Т3. На дисплей выводятся три возможности:

- PRIMARY (вывод значения выходного напряжения),
- SECUNDARY (вывод значения выходного напряжения и тока выпрямителей),
- EXTENDED (вывод значение выходного напряжения, тока выпрямителей, трехфазного сетевого напряжения).

54.55 V 201.0 A

MAR.20, 2007 14:38:26	
54.55 V	
201.0 A	

	MAR.20, 2007 14:38:26
U =	54.55 V
IR =	201.0 A
UL1 =	231.0 V
UL2 =	232.0 V
UL3 =	231.0 V

		MAR.20, 2	2007 14:38:26
L	J =	54.55 V	
I	R =	201.0 A	7 5
L	JL1 =	= 231.0 V	- <u>-</u>
l	JL2 =	= 232.0 V	
ι	JL3 =	= 231.0 V	

Нажатием на кнопку Т1 или Т2 выбирается одна из возможностей. Выбор подтверждается нажатием на кнопку Т3. Предлагается возможность подтверждения настройки (ОК) или отмены настройки основного окна (CANCEL). При помощи кнопки Т1 или Т2 выделяется желаемое отображение и выбор подтверждается нажатием на кнопку Т3. Затем система возвращается в соответствующий пункт меню и этим подтверждается ввод.

Настройка подсветки дисплея выполняется во втором пункте меню "LIGHTING", выбор которого подтверждается нажатием на кнопку Т3. На дисплей выводятся возможности включения (ENABLED) и выключения (DISABLED) подсветки дисплея. При помощи кнопки Т1 или Т2 выбирается одна из этих возможностей и выбор подтверждается нажатием на кнопку Т3. Затем система возвращается в соответствующий пункт меню.

Запуск пункта меню "DISPLAY" выполняется путем выбора "EXIT" и нажатием на кнопку Т3.

Если в течение 30 секунд в каком-либо пункте меню не будет нажата какая-либо из кнопок, то ввод изменений автоматически завершается, изменение не выполняется и на дисплей выводится основное отображение.

23.4.4.3. Пункт меню "CONNECTION TYPE"

Настройка вида удаленного управления выполняется в пункте меню "CONNECTION TYPE", выбор которого подтверждается нажатием на кнопку Т3. На дисплей выводятся следующие возможности:

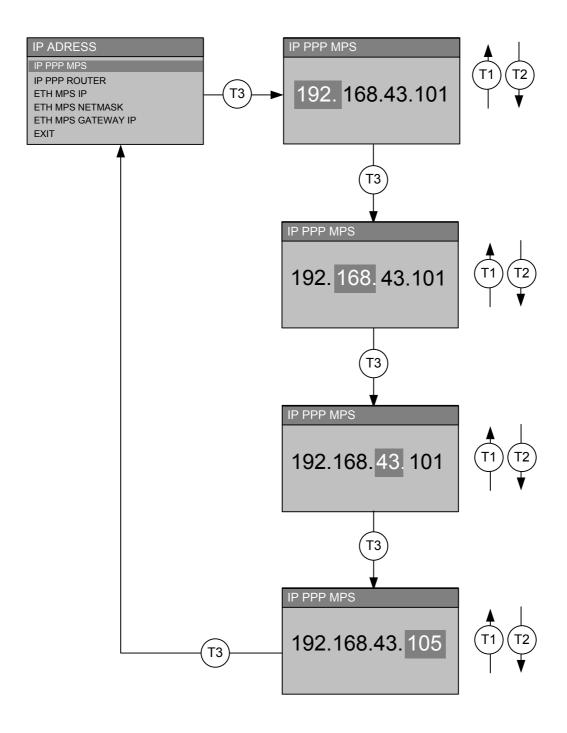
1	CABLE	прямое соединение (кабель, арендованная линия)
2	VIA SI2000	соединение через узел коммутации SI2000
3	ETHERNET	подключение к ІР-сети

Нажатием на кнопку Т1 или Т2 выбирается одна из возможностей. Выбор подтверждается нажатием на кнопку Т3. Для удаленного управления на дисплее предлагается возможность подтверждения настройки (ОК) или отмены настройки вида удаленного управления (CANCEL). При помощи кнопки Т1 или Т2 выделяется желаемый вид удаленного управления и выбор подтверждается нажатием на кнопку Т3. Затем система возвращается в пункт меню "CONNECTION TYPE".

Если в течение 30 секунд в пункте меню не будет нажата какая-либо из кнопок (T1, T2 или T3), то настройка автоматически завершается, изменение не выполняется и на дисплей выводится основное отображение.

23.4.4.4. Пункт меню IP ADDRESS

Установка IP-адреса выполняется в пункте меню IP ADDRESS, выбор которого подтверждается нажатием на кнопку Т3. На дисплей выводятся следующие возможности:


1	IP PPP MPS	сетевой адрес контрольного блока или системы MPS (подключение по RS232)	
2	IP PPP ROUTER	сетевой адрес системы (маршрутизатора), к которой подключена система	
		электропитания MPS (подключение по RS232)	
3	ETH MPS IP	сетевой адрес контрольного блока или системы MPS (подключение через сеть ethernet)	
4	ETH MPS NETMASK	сетевая маска (подключение через сеть ethernet)	
4	ETH MPS GATEWAY IP	сетевой адрес шлюза (подключение через сеть ethernet)	
5	EXIT	выход из меню	

Путем нажатия на кнопку T1 или T2 выбирается одна из возможностей и выбор подтверждается нажатием на кнопку T3.

На дисплей выводится установленное в настоящее время значение IP-адреса. Часть IP-адреса, которую можно изменять, выделена. При каждом нажатии на одну из кнопок (Т1 — для увеличения значения, Т2 — для уменьшения значения) в течение менее одной секунды значение изменяется на 1. При постоянном нажатии кнопки Т1 или Т2 в течение первых пяти секунд значение будет увеличиваться или уменьшаться на 1 через каждые 500 мс удержания кнопки в нажатом состоянии. По истечении пяти секунд этот шаг увеличивается до 10. Значение можно изменять в допустимых пределах (от 0 до 255). Для перехода к установке другой части IP-адреса требуется нажать кнопку Т3 и повторить процедуру настройки. После ввода четвертой части IP-адреса и нажатия на кнопку Т3 предлагается возможность подтверждения введенного IP-адреса или отмена установки IP-адреса (CANCEL). При помощи кнопки Т1 или Т2 выделяется желаемое и подтвердить выбор нажатием на кнопку Т3. Система возвращается в пункт меню "IP ADDRESS".

Если в течение 30 секунд в пункте меню не будет нажата какая-либо из кнопок (T1, T2 или T3), то настройка автоматически завершается, изменение не выполняется и на дисплей выводится основное отображение.

Запуск пункта меню "IP ADDRESS" выполняется путем выбора "EXIT" и нажатием на кнопку Т3.

23.4.4.5. Пункт меню "SW VERSION"

Пункт меню выбирается при помощи кнопки Т3. В пункте меню "SW VERSION" считывается версия программного пакета, загруженного в систему MPS.

Для выхода из пункта меню необходимо нажать кнопку Т3 или автоматически, если в течение 30 секунд в пункте меню не будет нажата какая-либо из кнопок.

23.4.4.6. Пункт меню "U CALIBRATION"

Пункт меню выбирается при помощи кнопки Т3. В пункте меню "U CALIBRATION" выполняется калибровка вольтметра выходного напряжения U системы электропитания MPS.

На дисплей выводится значение измеренного в настоящее время выходного напряжения. При каждом нажатии на одну из кнопок (T1 – для увеличения напряжения, T2 – для уменьшения напряжения) в течение менее одной секунды напряжение увеличивается или уменьшается на 10 мВ, максимально до 1 В.

Для выхода из пункта меню, служащего для настройки напряжения, необходимо нажать кнопку Т3. На дисплей выводится возможность подтверждения выбранного значения (ОК) или отмены изменения значения (CANCEL). При помощи кнопки Т1 или Т2 выбирается нужное значение и выбор подтверждается нажатием на кнопку Т3. Система возвращается в меню "SYSTEM".

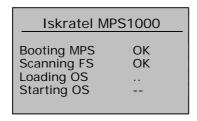
Если в течение 30 секунд в пункте меню не будет нажата какая-либо из кнопок, то калибровка измерителя выходного напряжения автоматически завершается и на дисплей выводится основное отображение.

23.5. Меню "TESTS"

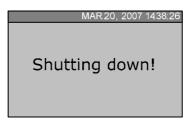
Меню имеет следующие пункты меню:

1	AUDIO ALARM	тестирование звукового аварийного сигнала
2	FAN UNITS	тестирование вентиляторных блоков
3	EXIT	выход из меню

Путем нажатия на кнопку Т1 или Т2 выбирается одна из возможностей. Нажатием на кнопку Т3 включается тестирование звукового сигнала или вентиляторных блоков, подключенных к системе электропитания MPS. Тестирование звукового сигнала длится 10 секунд, а тестирование вентиляторного блока – 60 секунд. В ходе тестирования при появлении звукового сигнала на дисплей выводится символ аварийного сигнала – колокольчик. В ходе тестирования вентиляторных блоков на дисплее высвечивается надпись Fan test! In progress ...В пункте меню "TESTS" возвращаемся путем нажатия на кнопку Т3.


Для выхода из пункта меню TESTS необходимо выбрать EXIT и нажатием на кнопку Т3.

Если в течение 30 секунд в пункте меню не будет нажата какая-либо из кнопок, то ввод изменений автоматически завершается и на дисплей выводится основное отображение.


23.6. Включение и выключение контрольного блока

При включении контрольного блока при помощи кнопки или при подключении переменного электропитания на дисплей выводятся сообщения, относящиеся к запуску операционной системы и приложения контрольного блока.

При выключении контрольного блока при помощи кнопки, перезагрузке системы или выключении системы вследствие низкого напряжения батареи на дисплей выводится сообщение о выключении приложения и операционной системы, а при перезагрузке системы — сообщение о выключении и автоматическом перезапуске приложения.

24. Контроль системы MPS с помощью терминала управления или узла управления

Контроль и управление системы MPS производится с помощью коммуникации между управителем системы и системой. Кроме коммуникации через дисплей с помощью трех кнопок на передней стороне блока ARH возможна коммуникация через порт Ethernet, к которому подключается терминал управления или узел управления.

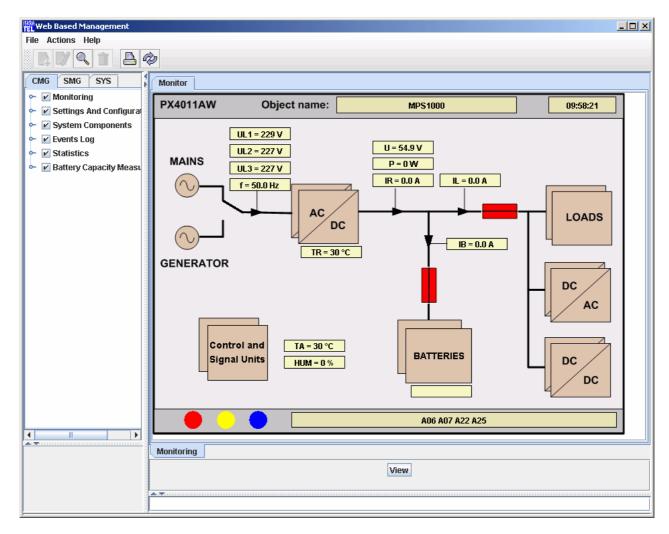
Контроль и управление системой электропитания реализован на английском языке.

24.1. Регистрация пользователя в системе

Для того чтобы пользователь мог зарегистрироваться в системе и запустить приложение MPS, он должен сначала запустить пользовательский интерфейс приложения веб-браузера (например, Internet Explorer) и ввести в адресную строку (**Address**) IP-адрес системы MPS (например, http://192.168.43.104). После успешного соединения с MPS в рабочее окно браузера загрузится стартовый веб-сайт MPS.

На этой странице приложения процедура регистрации запускается щелчком на **LOGIN**. Откроется окно для ввода имени пользователя (поле **User name**) и пароля пользователя (**Password**). Ввод данных подтверждается командой **OK**.

Если было введено неправильное имя пользователя или пароль, система выдаст сообщение о том, что регистрация была неуспешной, поскольку пользователь неизвестен или был введен неправильный пароль.



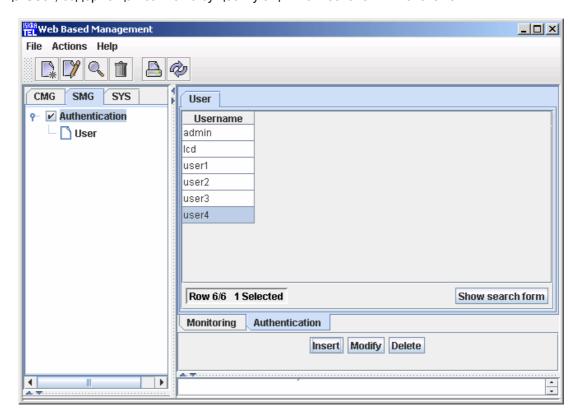
Если пользователь уже зарегистрирован в системе, система выдаст сообщение о том, что регистрация была неуспешной, поскольку пользователь уже зарегистрирован в системе.

После успешной регистрации пользователя в системе появится главный веб-сайт приложения MPS Web Based Management с тремя вкладками (CMG, SMG, SYS) и открытым элементом Monitor.

Администратор имеет возможность чтения и записи данных, а пользователь может только читать данные.

24.2. Добавление нового пользователя

Чтобы во время процесса управления можно было обеспечить оперативное техническое обслуживание системы, в системе должно быть задано число пользователей, каждому из которых заранее и отдельно предоставляется право на доступ к MPS1000.

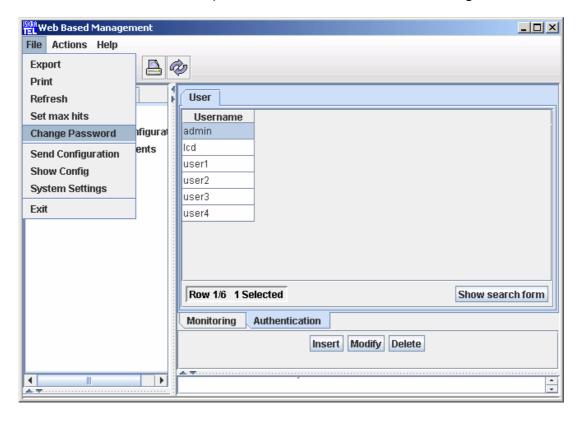

В системе MPS1000 сделаны заводские настройки следующих пользователей и паролей:

	Имя пользователя User Name	Пароль Password
Администратор	admin	admin
Администратор на LCD	LCD	0000000
Пользователь	user	user

Администратор может добавить до пяти пользователей и изменить свой пароль и пароль администратора на LCD. Пароль администратора на LCD должен состоять из комбинации максимально восьми '0' и '1'. Остальные пароли состоят из максимально 30 знаков.

Для добавления нового пользователя администратор в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы **SMG** и выполнить команду **Authentication > User** в режиме чтения и записи данных. После выполнения команды откроется таблица **User**, содержащая запись о существующих пользователях в системе.

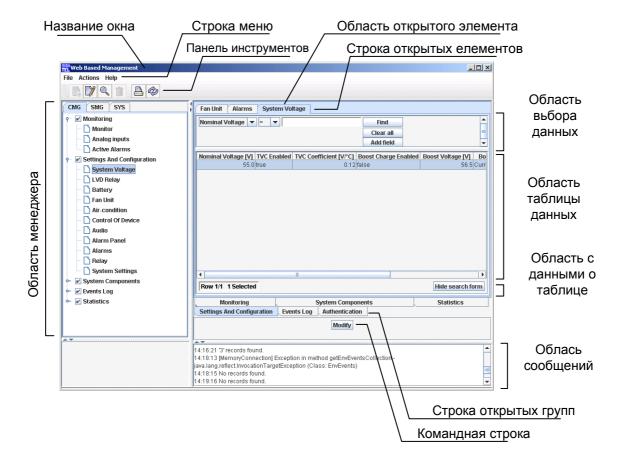
С помощью команды Insert (кнопка Insert) администратор создает нового пользователя.



Он должен ввести имя пользователя (**Username**), пароль (**Password**) и подтвердить новый пароль (**Confirm Password**). Запись введенного пароля подтверждается щелчком на кнопке **OK**.

24.3. Изменение пароля пользователя

Пользователь может изменить свой пароль выполнением команды File < Change Password.


После выполнения команды откроется окно, в котором повторно вводится существующий пароль (Old Password), новый пароль (New Password) и делается подтверждение нового пароля (Confirm New Password). Запись введенного пароля подтверждается щелчком на кнопке OK.

24.4. Общие инструкции по управлению

Основное окно **Web Based Management** состоит из частей, представленных на нижнем рисунке. Между этими частями находятся горизонтальные и вертикальные разделительные полоски, позволяющие пользователю расширять поля. В левой части горизонтальных полосок находятся стрелки для максимизации и минимизации поля . В вертикальных полосках стрелки расположены на верху. Стрелки показывают направление, в котором поле расширится при нажатии на стрелку.

24.4.1. Поле менеджера

Оно предназначено для отображения и скрытия элементов групп, для занятия групп элементов с целью изменения, а также для выбора элемента.

Отображение и сокрытие элементов группы: щелчком на переключателе (turner), стоящем перед названием группы элементов, группа элементов отображается или скрывается.

Занятие групп элементов с целью изменения: установкой флажка перед названием группы элементов, в которой элемент находится.

Выбор элемента: щелчком на названии элемента открывается элемент группы в рабочей области.

24.4.2. Рабочая область

Рабочая область служит для выбора открытых элементов, для ввода условий поиска, просмотра, изменения и удаления данных элемента.

24.4.2.1. Строка открытых элементов

Дает возможность отображения открытого элемента группы, выбранной в строке открытых групп.

Нажатием правой кнопкой мыши на строке открытых элементов открывается всплывающее меню строки открытых элементов:

- Close для закрытия выбранного открытого элемента,
- Close all для закрытия всех открытых элементов группы,
- Show apart для отображения в отдельном окне выбранного открытого элемента.

24.4.2.2. Строка открытых групп

Позволяет выбрать открытую группу элементов.

24.4.2.3. Поле выбора данных

Поле выбора данных открывается по запросу, для чего необходимо в области с данными о таблице щелкнуть на кнопке **Show search form**. После выполнения команды откроется поле выбора данных.

В поле содержатся команды:

- Find, поиск данных на основе введенных условий,
- Clear all, удаление всех условий выбора данных,
- Add field, добавление полей для поиска данных.

В области условий содержатся данные, которые зависят от элемента.

Если в основном окне открыто поле выбора данных, то в области данных о таблице находится кнопка **Hide search form**. После выполнения команды поле выбора данных закроется.

24.4.2.4. Область таблицы с данными

Она служит для выбора данных с целью их просмотра, обработки и изменения.

Упорядочивание:

- нажатием левой кнопкой мыши в поле названия данных данные расстанавливаются в возрастающем порядке,
- нажатием левой или правой кнопкой мыши в поле названия данных и ее удержанием в этом положении и перемещением мыши, можно сдвинуть позицию столбца в таблице.

Открытие соединений: нажатием левой кнопкой мыши в поле с подчеркнутыми данными открывается следующая таблица со связанными данными.

Выбор строки в таблице:

- нажатием левой кнопкой мыши в поле данных в таблице (одна строка),
- нажатием левой кнопкой мыши и одновременным удерживанием нажатой клавиши **Ctrl** (дополнительные строки),
- нажатием левой кнопкой мыши и одновременным удерживанием нажатой клавиши Shift (группа строк),
- нажатием правой кнопкой мыши в поле данных в таблице.

Всплывающее меню таблицы (открывается нажатием правой кнопкой мыши в поле данных в таблице):

- Colum properties: включение/выключение отображения столбца в таблице;
- Go to first line: переход на первую строку таблицы;
- Go to last line: переход на последнюю строку таблицы;
- Go to next line: переход на следующую строку таблицы;
- Go to previous line: переход на предыдущую строку таблицы;
- Select all lines: выбор всех строк;
- Unselect all lines: отмена выбора всех строк;
- Show grid (vertical, horizontal): отображение вертикальных/горизонтальных черт;
- Print: распечатка выделенных строк таблицы (см. главу «Окно Print Dialog»).

Изменение значений в полях ввода:

- двойным щелчком на данные в таблице,
- Выбором команды Modify/View в командной строке, на панели инструментов или в строке меню,
- нажатием правой кнопкой мыши в поле данных в таблице.

Экспорт выделенных (обозначенных) данных:

- выбором команды Export в строке меню (см. главу «Команда Export»),
- одновременным нажатием на клавиши Ctrl и C.

Одновременным нажатием на клавиши **Ctrl** и **C** производится копирование данных в буфер обмена данными. Если в таблице никакие данные не выделены, то производится копирование всех данных таблицы. Все данные в буфере расположены в своей собственной строке; поля данных разграничены табуляторами, благодаря чему можно импортировать содержимое буфера в другие программы (например, Microsoft Excel).

24.4.2.5. Область диаграммы

Щелчком правой кнопкой мыши в поле диаграммы откроется всплывающее меню диаграммы:

- Properties...: настройка свойств диаграммы (Chart Properties);
- Save as...: экспорт диаграммы в файл,
- **Print:** распечатка диаграммы;
- Zoom in:
 - **Both Axes**: увеличение отображения обеих осей,
 - Domain Axes: увеличение отображения оси у,
 - Range Axes: увеличение отображения оси x,
- Zoom Out:
 - **Both Axes:** уменьшение отображения обеих осей.
 - Domain Axes: уменьшение отображения оси у,
 - Range Axes: уменьшение отображения оси x,
- Auto Range
 - Both Axes: полное отображения обеих осей,
 - Domain Axes: полное отображения оси у,
 - Range Axes: полное отображения оси х;

Увеличение части диаграммы: нажатием и удержанием в этом положении левой кнопкой мыши в поле диаграммы и перемещением мыши вправо и вниз.

Отображение полной диаграммы: нажатием и удержанием в этом положении левой кнопкой мыши в поле диаграммы и перемещением мыши влево и вверх.

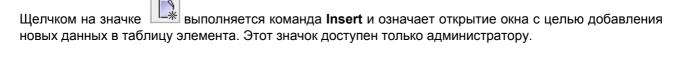
24.4.2.6. Область данных о таблице

В этой области содержится поле **Rows (n/m) x Selected**, где \mathbf{n} – это номер строки в таблице, которая была выбрана первой, \mathbf{m} – число строк таблицы, а \mathbf{x} – число выбранных строк.

Центральная часть этой области предназначена для удаления выбранных строк путем нажатия левой или правой клавиши мыши.

24.4.2.7. Командная строка

Предназначения для выполнения команд. Набор команд зависит от элемента и режима работы приложения.


24.4.3. Область сообщений

Предназначена для вывода сообщений о выполнении команд в окне Web Based Management.

24.4.4. Панель инструментов

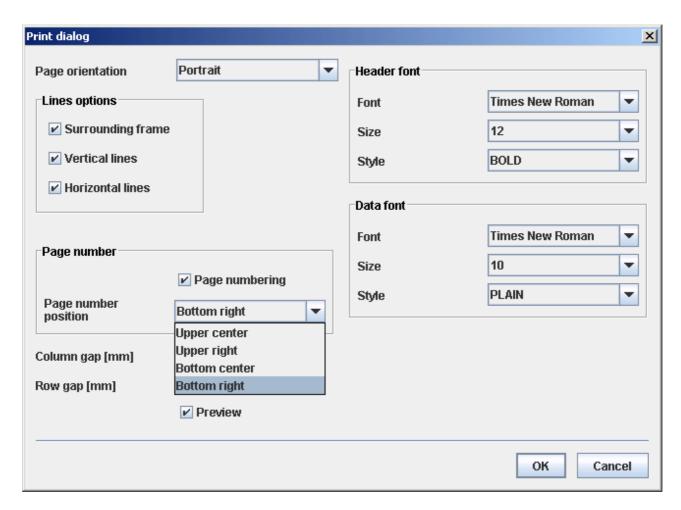
На панели инструментов находится шесть значков. Все значки не являются постоянно доступными. Использовать можно только те значки, которые окрашены черным цветом, а серые значки недоступны.

Щелчком на значке выполняется команда **Modify** и означает открытие окна с целью изменения выбранных данных в таблице элемента. Этот значок доступен только администратору.

Щелчком на значке выполняется команда **View** и означает открытие окна с целью отображения данных, выбранных в таблице элемента, в отдельном окне. Этот значок доступен также пользователю.

Щелчком на значке выполняется команда **Delete** и означает открытие окна с целью удаления одной или нескольких строк, выбранных в таблице. Этот значок доступен только администратору.

Щелчком на значке выполняется команда **Print** и означает открытие окна **Print Dialog** с целью оформления страницы для распечатки данных. Этот значок доступен также пользователю.


Щелчком на значке выполняется команда **Refresh** и означает обновление и/или отображение всех данных элемента в таблице. Этот значок доступен также пользователю.

24.4.4.1. Окно Print dialog

Окно **Print dialog** позволяет пользователю сделать настройки для распечатки выбранных строк таблицы элементов, таких как:

- ориентация распечатки (**Page Orentation**), где имеется возможность вертикальной, т.е. книжной (**Portrait**) или горизонтальной, т.е. альбомной (**Landscape**) ориентации листа;
- шрифт в верхнем колонтитуле (**Header font**); размер букв от 6 pt до 22 pt (**Size**), шрифты, имеющиеся на выбор на компьютере (**Font**) и тип начертания (**Type: PLAIN, BOLD** (полужирный), **ITALIC** (курсив), **BOLD ITALIC** (полужирный и курсив));
- шрифт выводимых данных (**Data font**); размер букв от 6 pt до 22 pt (**Size**), шрифты, имеющиеся на выбор на компьютере (**Font**), и тип начертания (**Type: PLAIN, BOLD** (полужирный), **ITALIC** (курсив), **BOLD ITALIC** (полужирный и курсив));
- настройка черт (Lines options), где можно обозначить рамку таблицы (Surrounding frame), вертикальные черты (Vertical lines) и горизонтальные черты (Horizontal lines);
- нумерация страниц (Page numbering) и позиции нумерации на странице (Page number position), где на выбор имеется нумерация на середине вверху (Upper center), справа вверху (Upper right), на середине внизу (Bottom center), справа внизу (Bottom right);
- расстояние между строками в миллиметрах (Row gap [mm]);
- расстояние между столбцами в миллиметрах (Column gap [mm]);
- просмотр страницы перед печатью (Preview).

С помощью команды **ОК** выполняется печать или предпросмотр страницы, если была выбрана данная возможность.

24.4.5. Строка меню

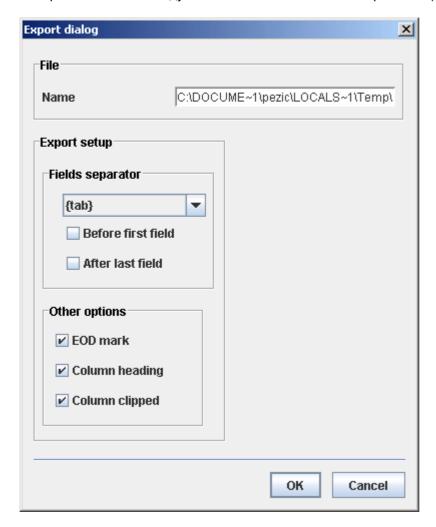
В строке меню доступны три меню, File, Actions и Help.

24.4.5.1. Меню File

В меню **File** находятся команды, служащие для:

- печати данных (Print),
- экспорта данных (Export),
- обновления данных (Refresh),
- изменения пароля (Change Password),
- отображения текущей конфигурации системы электропитания (Show Config),
- настройки заводских значений (Set to Defaults),
- выхода из окна (Exit).

24.4.5.1.1. Команда Print


После выполнения команды **Print** откроется окно **Print dialog**. См. главу «Окно Print dialog».

24.4.5.1.2. Команда Export

После выполнения команды **Export** откроется окно **Export Dialog**, в котором делаются следующие настройки:

- путь и имя файла для экспорта данных (File Name);
- тип разделителя между данными (Field separator) и позиция разделителя:
 - установка разделителя перед первым столбцом (Befire first field);
 - установка разделителя за задним столбцом (After last field);
- требование по выводу метки конца документа (EOD mark);
- требование по выводу имен столбцов (Column heading);
- требование по выводу значений полей без лишних пробелов (Column clipped).

С помощью команды **ОК** выполняется экспорт данных.

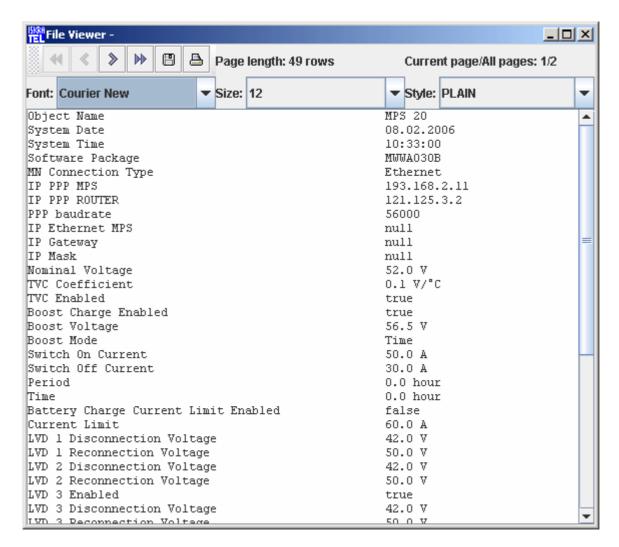
24.4.5.1.3. Команда Refresh

После выполнения команды **Refresh** будут обновлены все данные элемента в таблице.

24.4.5.1.4. Команда Change Password

После выполнения команды Change Password откроется окно Change Password.

Пользователь должен ввести в этом окне:


- старый пароль (Old Password),
- новый пароль (New Password),
- сделать подтверждение нового пароля (Confirm New Password).

Изменение пароля подтверждается выполнением команды ОК.

24.4.5.1.5. Команда Show Config

После выполнения команды **Show Config** откроется окно **File Viewer**, в котором записаны текущие настройки системы электропитания.

В окне можно настроить начертание выводимых данных: размер букв от 8 pt до 22 pt (Size), форма букв, т.е. шрифт, доступный на компьютере (Font) и стиль печати (Style: PLAIN, BOLD (полужирный), ITALIC (курсив), BOLD ITALIC (полужирный и курсив).

Щелчком на значке их можно сохранить текущие настройки системы электропитания в файл. А щелчком на значке

24.4.5.1.6. Команда Set to Defaults

После выполнения команды **Set to Defaults** откроется окно **Set to Defaults**, в котором администратор должен подтвердить, что он желает возвратить параметры системы в исходное состояние, т.е. на заводские значения. После щелчка на кнопке **Yes** все параметры установятся на заводские значения.

24.4.5.2. Меню Actions

В меню **Actions** содержатся команды, служащие для:

- ввода данных (Insert),
- изменения данных (Modify),
- просмотра данных (View) и
- удаления данных (Delete).

24.4.5.3. Меню НеІр

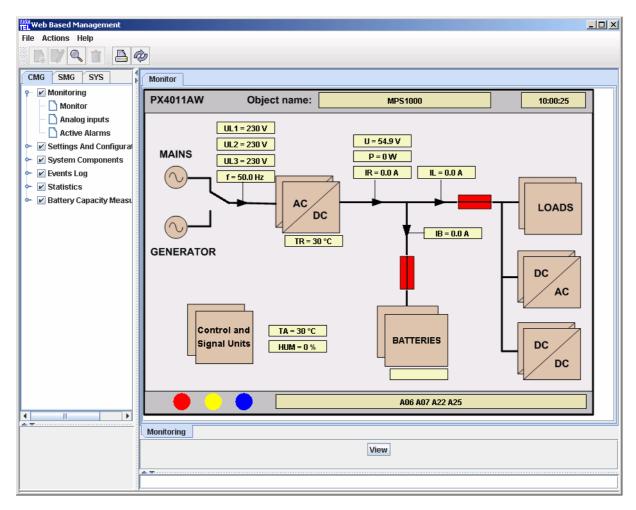
В меню Help содержится команда Environment.

После выполнения команды откроется окно **Environment**, в котором содержатся данные о уровне подробности вывода сообщений **Loging Level**.

24.4.6. Обрыв связи

В случае обрыва связи между терминалом управления или узлом и системой MPS, на экран будет выведено сообщение о том, что данные, отображаемые на терминале управления или на узле, не обновляются и их также невозможно изменять.

24.5. Контроль системы электропитания


Возможность контроля системы электропитания обеспечивается группой элементов **Monitoring**. В группе содержатся следующие элементы:

- Monitor: отображение наиболее важных данных системы;
- Analog Inputs: отображение измеренных аналоговых значений;
- Active Alarms: отображение активных аварийных сигналов системы.

24.5.1. Element Monitor - отображение основных данных системы

После успешной регистрации пользователя в системе появится главный веб-сайт приложения MPS **Web Based Management** с тремя вкладками (**CMG**, **SMG**, **SYS**) и открытым элементом **Monitor**, в котором постоянно отображаются наиболее важные данные системы. Элемент обновляется данными из MPS через каждые 2 секунды.

В поле элемента графически отображаются две главные токовые цепи системы электропитания, измеренные электрические значения, аварийные сигналы, а также имя объекта, его дата и время.

Графическое отображение системы MPS состоит из следующих символов отдельных блоков:

- питание от сети (MAINS),
- генератор (GENERATOR),
- выпрямители (AC/DC),
- инверторы (DC/AC),
- вольтодобавочные конверторы (DC/DC),
- блоки контроля и сигнализации ARH, ARG, ARI, ARJ, ARK, ARL, ARM (Control and Signal Units).
- батареи (BATTERIES),
- защитные элементы батарей (предохранители, автоматические выключатели),
- защитные элементы нагрузок (предохранители, автоматические выключатели).

Красный цвет символа в основном отображении означает повреждение на данном блоке.

Блоки связаны между собой электрически, а стрелки показывают направление тока. Если ток течет из батареи, стрелка повернется в противоположное направление. Если питание системы электропитания производится от генератора, переключатель повернется с символа MAINS на GENERATOR.

Графическое отображение имеет также измерительные окошечки (желтые поля) следующих значений:

- системное напряжение U,
- мощность системы Р,
- общий ток нагрузки IL,
- общий ток батарей IB,
- ток выпрямителей AC/DC IR,
- сетевое напряжение L1 UL1,
- сетевое напряжение L2 UL2,
- сетевое напряжение L3 UL3,
- частота сетевого напряжения f,
- температура окружающей среды ТА (если датчик оборудован)
- температура окружающей среды батарей ТВ (если датчик оборудован),
- температура окружающей среды выпрямителей AC/DC в шкафу TR (если датчик оборудован),
- относительная влажность окружающей среды RH.

На экране отображаются коды активных в тот момент аварийных сигналов. Три поля (сигнальные лампочки) отображают степень срочности активных аварийных сигналов. Окрашенное поле означает, что активен хотя-бы один аварийный сигнал определенной степени срочности:

- крайне срочный аварийный сигнал красный цвет,
- срочный аварийный сигнал желтый цвет,
- несрочный аварийный сигнал синий цвет.

Графическое отображение позволяет двойным щелчком левой кнопкой мыши на символе выбранных блоков открыть дополнительные таблицы или графические отображения:

- Символ AC/DC: откроется окно Rectifiers Status (см. главу «Элемент Power Modules блоки питания»);
- **Символ DC/DC:** откроется окно Invertor and Converter Status (см. главу «Элемент Power Modules блоки питания»);
- **Символ DC/AC:** откроется окно Invertor and Converter Status (см. главу «Элемент Power Modules блоки питания»);
- **Символ BATTERIES:** откроется окно ARI Battery Measuring Units (см. главу «Элемент ARI Battery Measuring Units блоки контроля напряжения аккумуляторов батареи»);
- Символ Control and Signal Units: откроется окно CSU Control and Signal Units (см. главу «Элемент ARH Control Unit контрольный блок»);
- **Символ предохранителя:** откроется окно с отображениями блоков, содержащих информацию о предохранителях и автоматических выключателях. Различия в окнах обусловлены типом системы электропитания MPS.

24.5.2. Элемент Analog Inputs – отображение измеренных аналоговых значений

Пользователь выполнением команды **Monitoring > Analog Inputs** откроет окно, в котором содержится таблица измеренных аналоговых значений **Analog Inputs**. В таблице находятся значения, которые уже содержались в измерительных окошечках основного экранного изображения, и значения, которые были измерены блоками ARL.

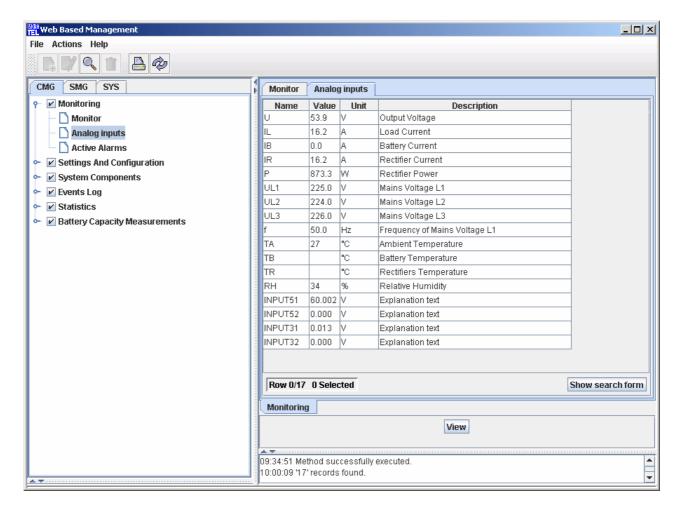
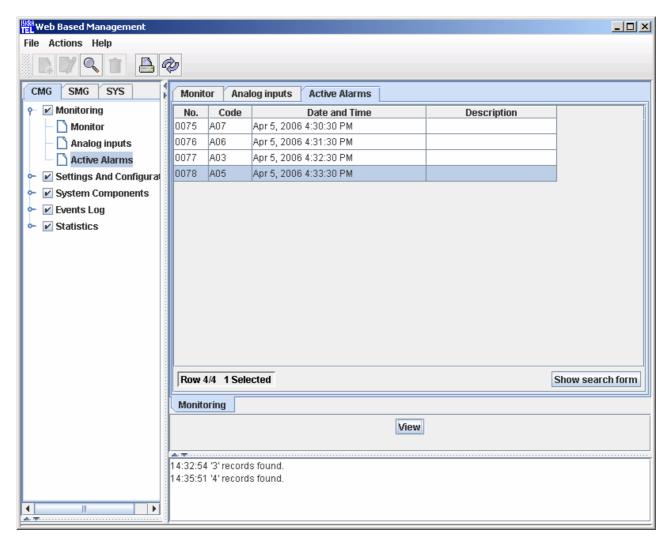


Таблица аналоговых входных данных содержит:

- название входных данных (Name).
- измеренное значение (Value).
- единица измерения (Unit).
- описание (Description).


24.5.3. Элемент Active Alarms - отображение активных аварийных сигналов системы

Пользователь выполнением команды **Monitoring > Active Alarms** откроет окно, в котором содержится таблица активных в тот момент аварийных сигналов.

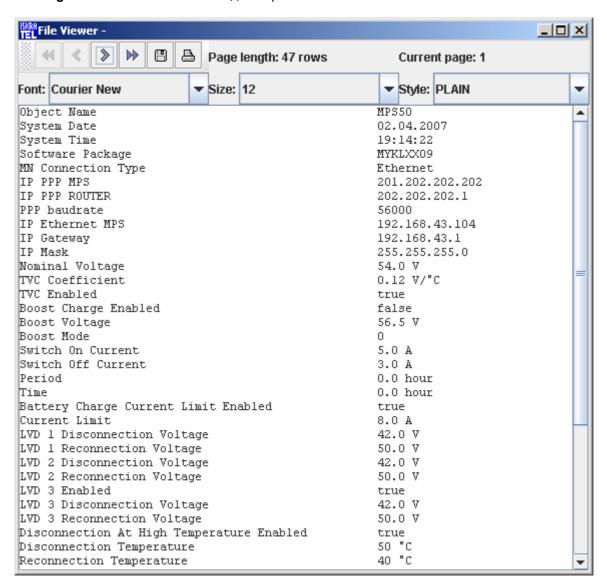
Таблица аварийных сигналов содержит:

- порядковый номер аварийного сигнала (No.);
- код аварийного сигнала (Code);
- дату и время появления аварийного сигнала (Date and Time);
- описание аварийного сигнала (Description).

В основное окно веб-приложения **Web Based Management** пользователь всегда может вернуться путем выбора вкладки функциональной группы **CMG** и выполнения команды **Monitoring > Monitor**.

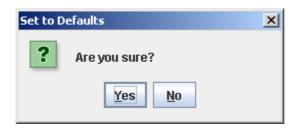
24.6. Настройки и конфигурация

Возможность настройки и конфигурирования системы электропитания и ее окружения обеспечивается группой элементов **Settings and Configuration**.


В группе содержатся следующие элементы:

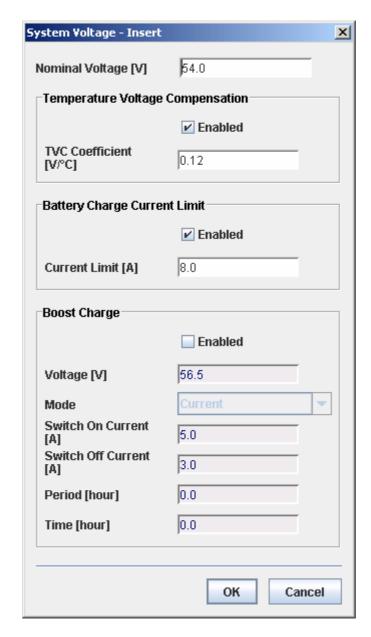
- System Voltage: служит для настройки системного напряжения.
- LVD Relay: служит для настройки управления реле LVD.
- **Battery**: служит для настройки параметров батареи.
- Fan unit: служит для настройки управления вентиляторным блоком.
- Air-Conditon: служит для настройки управления вентиляторами теплообменника и нагревателей.
- Control Of Device: служит для настройки управления внешними устройствами.
- Audio: служит для настройки управления звуковым аварийным сигналом.
- Alarm Panel: служит для настройки управления панелью аварийной сигнализации.
- Alarms: служит для настройки аварийных сигналов.
- Relay: служит для настройки реле.
- System Settings: служит для настройки системных параметров.

Просмотр конфигурации


Для просмотра и вывода на печать относящихся к системе электропитания настроек пользователь должен в окне веб-приложения **Web Based Management** выбрать меню **File** и выполнить команду **Show Config**. После выполнения команды откроется окно **File Viewer**.

Настройка заводских значений

Администратор может вернуть настройку параметров системы электропитания и ее окружения на заводские значения. Для этого необходимо в окне веб-приложения Web Based Management выбрать меню File и выполнить команду Set to Defaults. После выполнения команды откроется окно Set to Defaults, в котором администратор щелчком на кнопке Yes подтвердит настройку параметров системы на заводские значения.


Примечание:

При выполнении команды **Set to Defaults** настройки системных параметров (**System Settings**) не изменяются.

24.6.1. Элемент System Voltage – системное напряжение

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Settings and Configuration > System Voltage**. После выполнения команды откроется таблица, содержащая установленные текущие значения. Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **System Voltage**.

Окно дает администратору возможность записи, а пользователю – чтения:

- номинального напряжения системы (Nominal Voltage [V]);
- блокировки/разблокировки функции температурной компенсации напряжения (**Temperature Voltage Compensation**);
- температурного коэффициента напряжения (TVC Coefficient [V/°C]);
- блокировки/разблокировки функции ограничения тока заряда батареи (Battery Charge Current Limit);
- максимального тока заряда батарей (Current Limit [A]);
- блокировки/разблокировки функции ускоренного заряда батареи (Boost Charge);
- напряжения ускоренного заряда батарей (Boost Charge Voltagev [V]);
- режима активизации функции ускоренного заряда батарей (Boost Mode), причем на выбор имеются три режима активизации
 - Current (функцию активизирует ток, текущий в батарею),
 - Time (функция активизируется с регулярными временными интервалами) и
 - **Both** (функция активизируется с регулярными временными интервалами, но ее может также активизировать ток, текущий в батарею);

- текущего в батарею тока, который активизирует функцию ускоренного заряда батарей (Switch On Current [A]);
- текущего в батарею тока, который прерывает функцию ускоренного заряда батарей (**Switch Off Current [A]**);
- временного периоад активизации функции ускоренного заряда батарей (Period [hour]);
- времени выполнения функции ускоренного заряда батарей (Time [hour]);

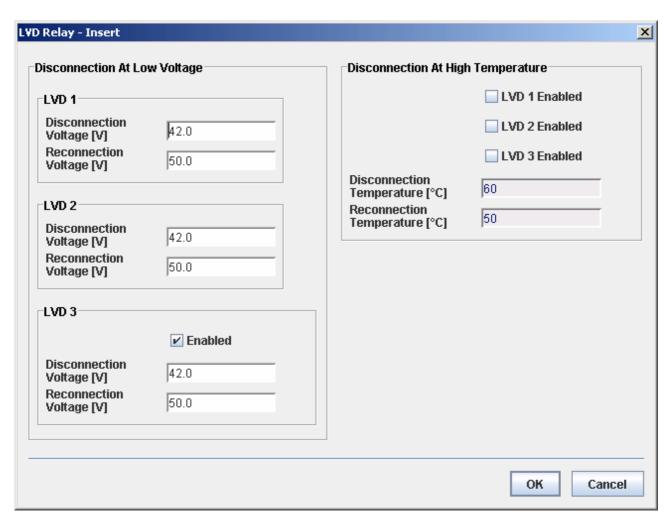
Запись данных подтверждается щелчком на кнопке **ОК**. Одновременно осуществляется выход из окна настроек.

	Значение,	Диапазон настройки
	установленное на	
	заводе.	
Nominal Voltage [V]*	54,0 B (68,1 B)	от 50,0 до 56,0 В (от 62,5 до
		70,5 B)
Temperature Voltage Compensation	enabled (включено)	
TVC Coefficient [V/°C]*	0,1 B/°C (0,12 B/°C)	от 0,05 до 0,2 В/°С
Battery Charge Current Limit	disabled (выключено)	
Current Limit [A])	10 A	от 0,1 до 9999,9 А
Boost Charge	disabled (выключено)	
Boost Charge Voltage [V]*	56,5 B (70,5 B)	от 50,5 до 60,0 В (от 62.5 до
		75,0 B)
Boost Mode	current (ток)	
Switch On Current [A]	50,0 A	от 0,4 до 1500,0 А
Switch Off Current [A]	30,0 A	от 0,2 до 1500,0 А
Period [hour]	0,1 час	от 0,1 до 9999,9 часа
Time [hour]	0,05 час	от 0,05 до 999,9 часа

^{*}Значение отличается в зависимости от типа системы электропитания: 48 В или 60 В. В скобках приведены значения для системы электропитания 60 В.

При вводе параметров необходимо учесть взаимозависимость установленных значений. Если при вводе выбранных значений не выполнены требуемые условия, выводится соответствующее сообщение.

Boost Charge Voltage > Nominal voltage Switch On Current > Switch Off Current


Period [hour] > Time [hour]

Nominal voltage > Low Battery Voltage +1 V
Boost Charge Voltage < High Battery Voltage

24.6.2. Элемент LVD Relay – управление реле LVD

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Settings and Configuration > LVD Relay**. После выполнения команды откроется таблица, содержащая установленные текущие значения. Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **LVD Relay**.

Окно дает администратору возможность записи, а пользователю – чтения:

- напряжения системы, при котором выключается реле LVD 1 (LVD1 Disconnection Voltage [V]);
- напряжения системы, при котором реле LVD 1 снова включится (LVD1 Reconnection Voltage [V]);
- напряжения системы, при котором выключается реле LVD 2 (LVD2 Disconnection Voltage [V]);
- напряжения системы, при котором реле LVD 2 снова включится (LVD2 Reconnection Voltage [V]);
- блокировки/разблокировки выключения реле LVD 3 из-за низкого напряжения системы (Disconnection At Low Voltage LVD 3);
- напряжения системы, при котором выключается реле LVD 3 (LVD3 Disconnection Voltage [V]);
- напряжения системы, при котором реле LVD 3 снова включится (LVD3 Reconnection Voltage [V]);
- блокировки/разблокировки выключения реле LVD 1 из-за высокой температуры окружающей среды или батарей (**Disconnection At Low Voltage LVD 1**);
- блокировки/разблокировки выключения реле LVD 2 из-за высокой температуры окружающей среды или батарей (Disconnection At High Temperature LVD 2);
- блокировки/разблокировки выключения реле LVD 3 из-за высокой температуры окружающей среды или батарей (Disconnection At High Temperature LVD 3);
- температуры батареи или окружающей среды, при которой выключаются реле LVD 1, LVD 2 и LVD 3 (Disconnection Temperature [°C]);
- температуры батареи или окружающей среды, при которой реле LVD 1, LVD 2 и LVD 3 снова включатся (Reconnection Temperature [°C]).

Запись данных подтверждается щелчком на кнопке **ОК**. Одновременно выполняется выход из окна настроек.

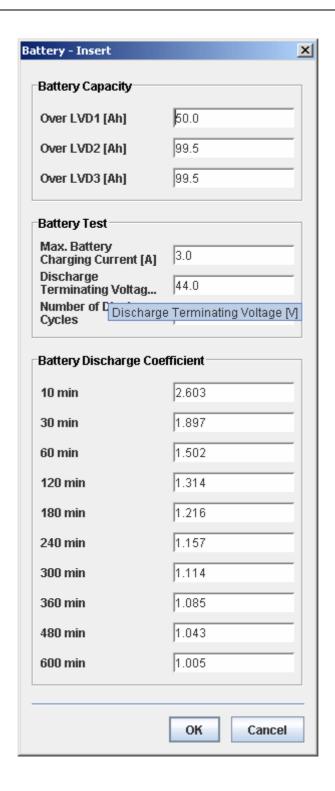
	Значение,	Диапазон настройки
	установленное на	
	заводе	
LVD1 Disconnection Voltage [V]*	42,0 B (52,0 B)	от 40,0 до 80,0 В
LVD1 Reconnection Voltage [V]*	50,0 B (62,0 B)	от 40,0 до 80,0 В
LVD2 Disconnection Voltage [V]*	42,0 B (52,0 B)	от 40,0 до 80,0 В
LVD2 Reconnection Voltage [V]*	50,0 B (62,0 B)	от 40,0 до 80,0 В
Disconnection At Low Voltage LVD 3	enabled (включено)	
LVD3 Disconnection Voltage [V]*	42,0 B (52,0 B)	от 40,0 до 80,0 В
LVD3 Reconnection Voltage [V]*	50,0 B (62,0 B)	от 40,0 до 80,0 В
Disconnection At High Temperature LVD 1	disabled (выключено)	
Disconnection At High Temperature LVD 2	disabled (выключено)	
Disconnection At High Temperature LVD 3	disabled (выключено)	
Disconnection Temperature [°C]	60° C	от 20,0 до 100,0° С
Reconnection Temperature [°C]	50° C	от 20,0 до 100,0° С

^{*}Значение отличается в зависимости от типа системы электропитания: 48 В или 60 В. В скобках приведены значения для системы электропитания 60 В.

При вводе параметров необходимо учесть взаимозависимость установленных значений.

LVD1 Reconnection Voltage >	L	_VD1 Disconnection Voltage
LVD2 Reconnection Voltage >	L	_VD2 Disconnection Voltage
LVD3 Reconnection Voltage >	L	_VD3 Disconnection Voltage
Disconnection Temperature >	F	Reconnection Temperature
LVD1 Disconnection Voltage <	(Critically Low Battery Voltage + 0.5 V
LVD2 Disconnection Voltage <	(Critically Low Battery Voltage + 0.5 V
LVD1 Disconnection Voltage <	[Discharge Terminating Voltage
LVD2 Disconnection Voltage <	[Discharge Terminating Voltage

Если при вводе выбранных значений не выполнены требуемые условия, выводится соответствующее сообщение.


Примечание!

В систему электропитания MPS1000.50 встроено только одно реле LVD, для которого действительны лишь настройки, относящиеся к LVD1.

24.6.3. Элемент Battery – параметры батареи

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы СМG и выполнить команду **Settings and Configuration > Battery**. После выполнения команды откроется таблица, содержащая установленные текущие значения. Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Battery**.

Окно дает администратору возможность записи, а пользователю – чтения:

- емкости батареи, подключенной в системе через реле LVD 1 (Battery Capacity Over LVD 1 [Ah]);
- емкости батареи, подключенной в системе через реле LVD 2 (Battery Capacity Over LVD 2 [Ah]);
- емкости батареи, подключенной в системе через реле LVD 3 (Battery Capacity Over LVD 3 [Ah]);
- текущего в батарею максимального тока, который допустим для запуска теста батареи (Max. Battery Charging Current [A]);
- напряжения системы, до которого выполняется тест батареи (Discharge Terminating Voltage [V]);
- число последовательных тестов батареи (Number of Discharge Cycles);

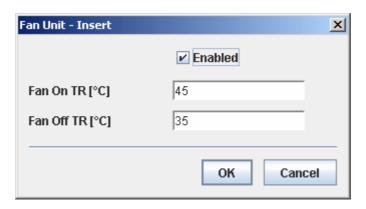
- коэффициент 10-минутного разряда батареи (Battery Discharge Coefficient 10 min);
- коэффициент 30-минутного разряда батареи (Battery Discharge Coefficient 30 min);
- коэффициент 60-минутного разряда батареи (Battery Discharge Coefficient 60 min);
- коэффициент 120-минутного разряда батареи (Battery Discharge Coefficient 120 min);
- коэффициент 180-минутного разряда батареи (Battery Discharge Coefficient 180 min);
- коэффициент 240-минутного разряда батареи (Battery Discharge Coefficient 240 min);
- коэффициент 300-минутного разряда батареи (Battery Discharge Coefficient 300 min);
- коэффициент 360-минутного разряда батареи (Battery Discharge Coefficient 360 min):
- коэффициент 480-минутного разряда батареи (Battery Discharge Coefficient 480 min);
- коэффициент 600-минутного разряда батареи (Battery Discharge Coefficient 600 min).

Запись данных подтверждается щелчком на кнопке **ОК**. Одновременно выполняется выход из окна настроек.

	Значение,	Диапазон настройки
	установленное на	
	заводе	
Battery Capacity Over LVD 1 [Ah]	0,0 А-час	от 0,0 до 9999,0 А-час
Battery Capacity Over LVD 2 [Ah]	0,0 А-час	от 0,0 до 9999,0 А-час
Battery Capacity Over LVD 3 [Ah]	0,0 А-час	от 0,0 до 9999,0 А-час
Max. Battery Charging Current [A]	3,0 A	от 0,1 до 99,0 А
Discharge Terminating Voltage [V]*	44,0 B	от 43,0 до 80,0 В
	(55,0 B)	(от 53,5 до 80,0 В)
Number of Discharge Cycles	1	от 1 до 5
Battery Discharge Coefficient 10 min	2,603	от 1,0 до 10,0
Battery Discharge Coefficient 30 min	1,897	от 1,0 до 10,0
Battery Discharge Coefficient 60 min	1,502	от 1,0 до 10,0
Battery Discharge Coefficient 120 min	1,314	от 1,0 до 10,0
Battery Discharge Coefficient 180 min	1,216	от 1,0 до 10,0
Battery Discharge Coefficient 240 min	1,157	от 1,0 до 10,0
Battery Discharge Coefficient 300 min	1,114	от 1,0 до 10,0
Battery Discharge Coefficient 360 min	1,085	от 1,0 до 10,0
Battery Discharge Coefficient 480 min	1,043	от 1,0 до 10,0
Battery Discharge Coefficient 600 min	1,005	от 1,0 до 10,0

^{*}Значение отличается в зависимости от типа системы электропитания: 48 В или 60 В. В скобках приведены значения для системы электропитания 60 В.

При вводе параметров необходимо учесть взаимозависимость установленных значений.


Discharge Terminating Voltage > LVD1 Disconnection Voltage
Discharge Terminating Voltage > LVD2 Disconnection Voltage

Если при вводе выбранных значений не выполнены требуемые условия, выводится соответствующее сообщение.

24.6.4. Элемент Fan Unit – управление вентиляторным блоком

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Settings and Configuration > Fan Unit**. После выполнения команды откроется таблица, содержащая установленные текущие значения. Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Fan Unit**.

Окно дает администратору возможность записи, а пользователю – чтения:

- блокировки/разблокировки управления вентиляторным блоком из-за высокой температуры, измеренной на датчике TR (**Fan Unit**);
- температуры, измеренной на датчике TR, при которой включается вентилятор (Fan On TR [°C]);
- температуры, измеренной на датчике TR, при которой вентилятор выключается (Fan Off TR [°C]);

Запись данных подтверждается щелчком на кнопке **ОК**. Одновременно выполняется выход из окна настроек.

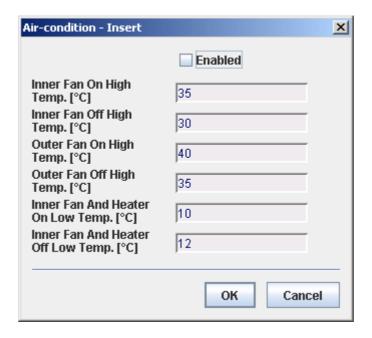
	Значение,	Диапазон настройки
	ное на заводе	
Fan Unit	disabled (выключено)	
Fan On TR [°C]	45° C	от 20,0 до 100,0° С
Fan Off TR [°C]	35° C	от 20,0 до 100,0° С

При вводе параметров необходимо учесть взаимозависимость установленных значений.

Fan On TR > Fan Off TR

Fan On TR < Critically high temp of rectifiers

Если при вводе выбранных значений не выполнены требуемые условия, выводится соответствующее сообщение.


Примечание!

Аппаратные средства системы MPS1000.50 не обеспечивают возможности управления вентиляторным блоком.

24.6.5. Элемент Air-conditon - управление вентиляторами теплообменника и нагревателями.

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Settings and Configuration > Air-condition**. После выполнения команды откроется таблица, содержащая установленные текущие значения. Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Air-condition**.

Окно дает администратору возможность записи, а пользователю – чтения:

- блокировки/разблокировки управления вентиляторами теплообменника и наггревателями изза высокой температуры окружающей среды (Air-conditon);
- температуры окружающей среды (датчик ТА), при которой включается внутренний вентилятор (Inner Fan On High Temp. [°C]);
- температуры окружающей среды (датчик ТА), при которой внутренний вентилятор выключается (Inner Fan Off High Temp. [°C]);
- температуры окружающей среды (датчик TA), при которой включается внешний вентилятор (Outer Fan On High Temp. [°C]);
- температуры окружающей среды (датчик ТА), при которой внешний вентилятор выключается (Outer Fan Off High Temp. [°C]);
- температуры окружающей среды (датчик TA), при которой включается внутренний вентилятор и нагреватель (Inner Fan And Heater On Low Temp. [°C]);
- температуры окружающей среды (датчик TA), при которой внутренний вентилятор и нагреватель выключаются (Inner Fan And Heater Off Low Temp. [°C]).

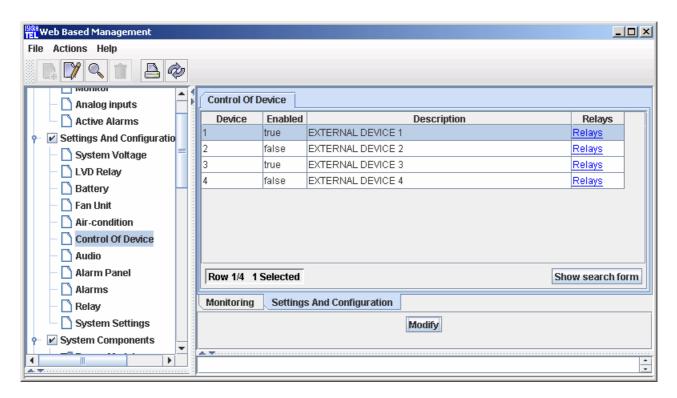
Запись данных подтверждается щелчком на кнопке **ОК**. Одновременно выполняется выход из окна настроек.

	Значение,	Диапазон настройки
	установленное на	
	заводе	
Air-conditon	disabled (выключено)	
Inner Fan On High Temp. [°C]	35° C	от 20,0 до 100,0° С
Inner Fan Off High Temp. [°C]	30° C	от 20,0 до 100,0° С
Outer Fan On High Temp. [°C]	40° C	от 20,0 до 100,0° С
Outer Fan Off High Temp. [°C]	35° C	от 20,0 до 100,0° С
Inner Fan And Heater On Low Temp. [°C]	10° C	от 0,0 до 20,0° С
Inner Fan And Heater Off Low Temp. [°C]	12° C	от 0,0 до 20,0° С

При вводе параметров необходимо учесть взаимозависимость установленных значений.

Inner Fan On High Temp.
Outer Fan On High Temp
Inner Fan And Heater On Low Temp.

- > Inner Fan Off High Temp.
- Outer Fan Off High Temp.
- < Inner Fan And Heater Off Low Temp.


Если при вводе выбранных значений не выполнены требуемые условия, выводится соответствующее сообщение.

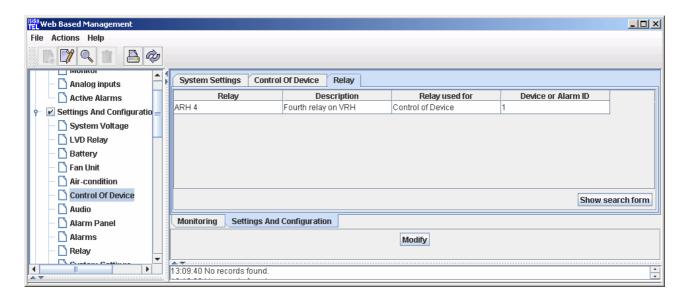
При активизации функции управления вентиляторами теплообменника и нагревателями назначение реле ARH 1 автоматически устанавливается на управление внешним вентилятором, реле ARH 2 — на управление внутренним вентилятором, а реле ARH 3 — на управление нагревателем, и вдобавок к этому автоматически изменяется описание реле (**Description**). Описание реле ARH1 будет **EXTERNAL FAN**, реле ARH 2 — **INTERNAL FAN**, а реле ARH 3 — **HEATER**. Если предварительно уже было выбрано другое назначение для этих трех реле, разблокировка функции невозможна, и выводится следующее предупреждение: "**RELAYS HAVE BEEN ALREADY USED**". Администратор должен согласовать управление реле. Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Settings and Configuration > Relay**. См. главу «Элемент Relay — управление реле»!

24.6.6. Элемент Control of Device – управление внешними устройствами

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Settings and Configuration > Control Of Device**. После выполнения команды откроется таблица, содержащая установленные текущие значения четырех внешних устройств.

Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Control Of Device**.

Окно дает администратору возможность записи, а пользователю – чтения:


- блокировки/разблокировки управления внешним устройством (**Device**), на заводе установлена блокировка;
- имя или описание внешнего устройства (**Description**) с максимально 30 буквенно-цифровыми знаками.

Запись данных подтверждается щелчком на кнопке \mathbf{OK} . Одновременно выполняется выход из окна настроек.

Администратор щелчком на <u>Relay</u> проверяет, какое реле сработает при активизации управления внешним устройством.

Если реле был уже выбран (см. главу «Элемент Relay – управление реле»), откроется окно, содержащее таблицу с детальным описанием реле.

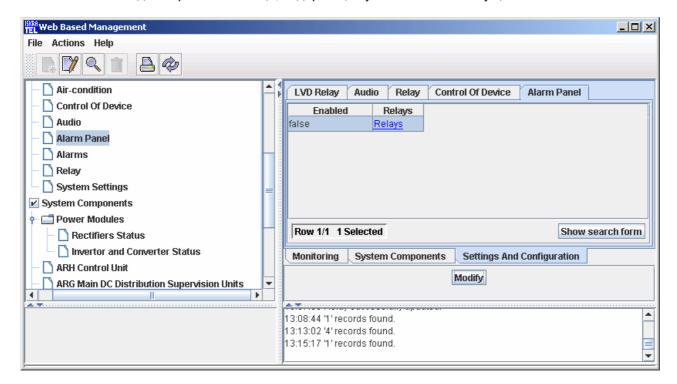
Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Relay** (см. главу «Элемент Relay – управление реле»).

Если реле не было выбрано, выводится сообщение

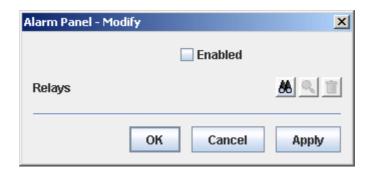
Для настройки реле администратор в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Settings and Configuration > Relay**. См. главу «Элемент Relay – управление реле»!

24.6.7. Элемент Audio - управление звуковым аварийным сигналом

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Settings and Configuration > Audio**. После выполнения команды откроется таблица, содержащая установленные текущие значения. Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Audio**.


Окно дает администратору возможность установки, а пользователю – чтения:

• блокировки/разблокировки звукового аварийного сигнала (**Audio**) из-за крайне срочного аварийного сигнала; заводская установка – разблокирован.


Ввод данных подтверждается щелчком на кнопке **ОК**. Одновременно выполняется выход из окна настроек.

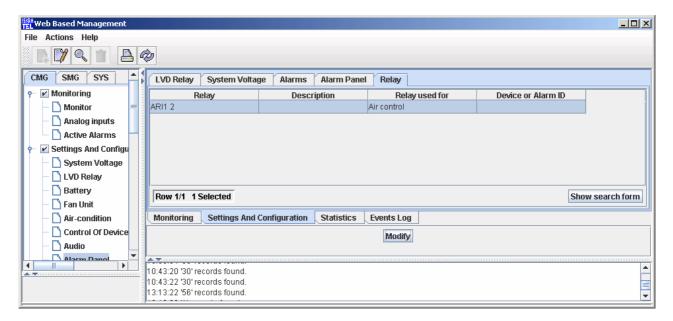
24.6.8. Элемент Alarm Panel – управление панелью аварийной сигнализации

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Settings and Configuration > Alarm Panel**. После выполнения команды откроется таблица, содержащая установленные текущие значения.

Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Alarm Panel**.

Окно дает администратору возможность установки, а пользователю – чтения:

• блокировки/разблокировки управления панелью аварийной сигнализации (**Alarm Panel**); заводская установка – функция заблокирована;



- отображение реле, управляемых функцией панели аварийной сигнализации;
- просмотр всех реле системы (щелчок на значке 🟝).

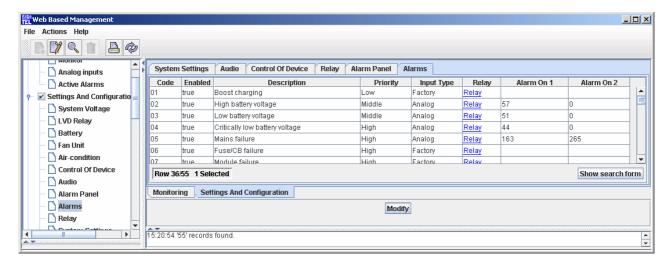
Ввод данных подтверждается щелчком на кнопке **ОК**. Одновременно выполняется выход из окна настроек.

Администратор щелчком на <u>Relay</u> проверяет, какие реле сработают при активизации управления панелью аварийной сигнализации.

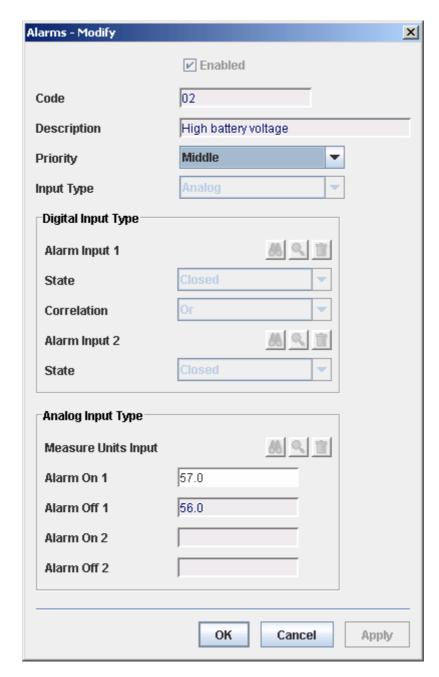
Если реле были уже выбраны (см. главу «Элемент Relay – управление реле»), откроется окно, содержащее таблицу с детальными описаниями реле.

Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View.** После выполнения команды откроется окно **Relay** (см. главу «Элемент Relay – управление реле»).

Если никакое реле не было выбрано, выводится сообщение



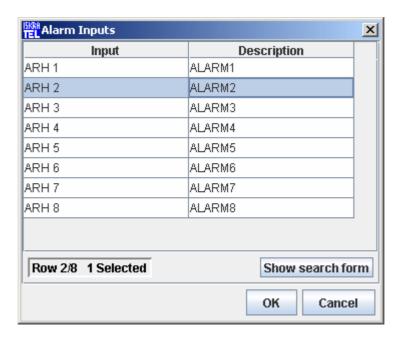
Для настройки реле администратор в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Settings and Configuration > Relay**. См. главу «Элемент Relay – управление реле»!


24.6.9. Элемент Alarms – аварийные сигналы

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы СМG и выполнить команду **Settings and Configuration > Alarms**. После выполнения команды откроется таблица, содержащая установленные текущие значения всех 64 аварийных сигналов системы электропитания и ее окружающей среды.

Администратор может выбрать аварийный сигнал в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Alarms**.

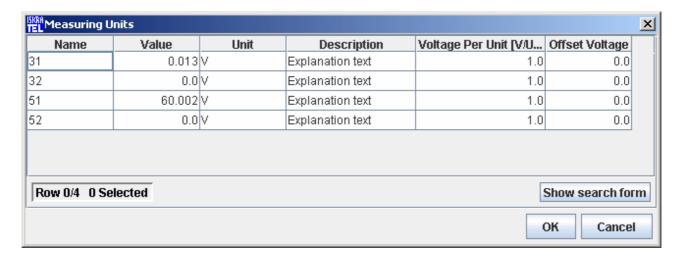
Окно дает администратору возможность записи в светлые поля и чтения данных в окрашенных серым цветом полях. А пользователь может только читать следующие данные:


- блокировку/разблокировку аварийного сигнала (Alarms);
- код аварийного сигнала (Code);
- имя или описание внешнего устройства (**Description**) с максимально 25 буквенно-цифровыми знаками;
- срочность аварийного сигнала (**Priority**), где имеются три степени:
 - Low (несрочный аварийный сигнал),
 - Middle (срочный аварийный сигнал) и
 - High (крайне срочный аварийный сигнал);
- тип аварийного сигнала (Input Type):
 - Analog (аварийный сигнал управляется измеренным аналоговым значением);
 - Digital (аварийный сигнал управляется измеренным цифровым значением);
 - **Factory** (заводское определение аварийного сигнала).

В зависимости от выбранного типа аварийного сигнала окно обеспечивает администратору возможность записи, а пользователю – чтения данных определенных полей.

Цифровой тип аварийного сигнала (**Digital Input Type**) дает возможность записи или чтения настроек:

• входа 1 аварийной сигнализации (**Alarm Input 1**), где пользователь щелчком на символе бинокля может выбрать доступный ему вход аварийного сигнала; заводской установки для этого входа нет;


- состояния входа 1 аварийной сигнализации, вызывающего генерирование аварийного сигнала (**State**), где на выбор имеется возможность **Closed** (замкнутые контакты аварийного сигнала) и **Open** (разомкнутые контакты аварийного сигнала); заводская установка **Open**;
- подключения аварийного сигнала к дополнительному входу 2 (Correlation), где на выбор имеется возможность And (аварийный сигнал генерируется, если оба входа, и 1-ый и 2-ой, аварийной сигнализации находятся в состоянии аварии), Or (аварийный сигнал генерируется, если в состоянии аварии находится вход 1 или вход 2) и None (вход 2 не влияет на генерирование аварийного сигнала): на заводе установлено значение None:
- входа 2 аварийной сигнализации (**Alarm Input 2**), где пользователь щелчком на символе бинокля может выбрать доступный ему вход аварийного сигнала; заводской установки для этого входа нет;
- состояния входа 2 аварийной сигнализации, вызывающего генерирование аварийного сигнала (**State**), где на выбор имеется возможность **Closed** (замкнутые контакты аварийного сигнала) и **Open** (разомкнутые контакты аварийного сигнала); заводская установка **Closed**;

Разблокировка аварийного сигнала цифрового типа возможна лишь при условии, если определен вход 1 аварийного сигнала.

Аналоговый тип аварийного сигнала (**Analog Input Type**) дает возможность записи или чтения настроек:

• входа измерительного блока (**Measure Units Input**), где пользователь щелчком на символе бинокля может выбрать доступный ему вход измерительного блока; заводской установки для этого входа нет;

- значения аналогового входа, при котором аварийный сигнал включается (Alarm On 1), заводской установки для входа нет;
- значения аналогового входа, при котором аварийный сигнал выключается (**Alarm On 1**), заводской установки для входа нет;
- значения аналогового входа, при котором аварийный сигнал включается (Alarm On 2), заводской установки для входа нет;
- значения аналогового входа, при котором аварийный сигнал выключается (Alarm On 2), заводской установки для входа нет.

Генерирование аварийного сигнала вследствие слишком низкого значения аналогового входа:

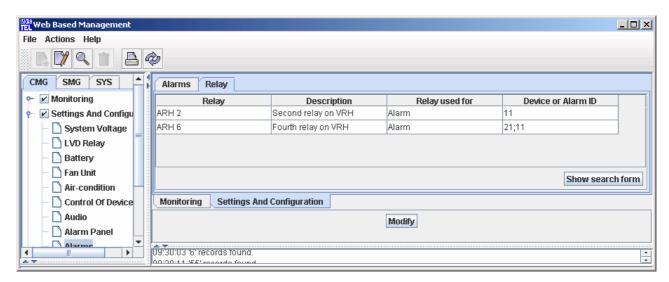
Если измеренное значение снизится под значение **Alarm On 1**, генерируется аварийный сигнал, если измеренное значение превысит значение **Alarm Off 1**, аварийный сигнал исчезнет. Значение **Alarm On 1** должно быть меньше, чем значение **Alarm Off 1**

Генерирование аварийного сигнала вследствие слишком высокого значения аналогового входа:

Если измеренное значение превысит значение **Alarm On 1**, генерируется аварийный сигнал, если измеренное значение снизится под значение **Alarm Off 1**, аварийный сигнал исчезнет. Значение **Alarm On 1** должно быть больше, чем значение **Alarm Off 1**

Генерирование аварийного сигнала вследствие слишком высокого или слишком низкого значения аналогового входа:

Если измеренное значение снизится под значение **Alarm On 1**, генерируется аварийный сигнал, а если измеренное значение превысит значение **Alarm Off 1**, аварийный сигнал исчезнет. Значение **Alarm On 1** должно быть меньше, чем значение **Alarm Off 1**


Если измеренное значение превысит значение **Alarm On 2**, генерируется аварийный сигнал, а если измеренное значение снизится под значение **Alarm Off 2**, аварийный сигнал исчезнет. Значение **Alarm On 2** должно быть больше, чем значение **Alarm Off 2**.

Ввод данных подтверждается щелчком на кнопке **ОК**. Одновременно выполняется выход из окна настроек аварийных сигналов.

Администратор может в окне **Alarms** щелчком на **Relay** проверить, какое реле сработает при активизации аварийного сигнала.

Если реле было уже выбрано (см. главу «Элемент Relay – управление реле»), откроется окно, содержащее таблицу с детальными описаниями реле.

Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Relay** (см. главу «Элемент Relay - управление реле»).

Если реле не было выбрано, выводится сообщение

Для настройки реле администратор в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Settings and Configuration > Relay**. См. главу «Элемент Relay – управление реле»!

При вводе параметров необходимо учесть взаимозависимость установленных значений.

High Battery Voltage > Low Battery Voltage +1 V

Low Battery Voltage > Critically Low Battery Voltage + 0.5 V

Low Battery Voltage +1 V < Nominal voltage

Critically Low Battery Voltage + 0.5 V > LVD1 Disconnection Voltage

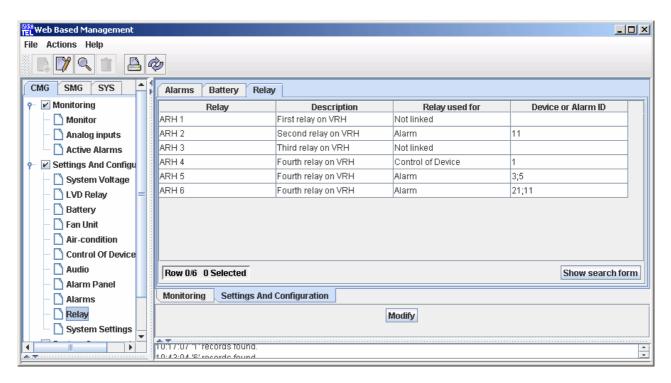
Critically Low Battery Voltage + 0.5 V > LVD2 Disconnection Voltage

High Battery Voltage > Boost Charge Voltage

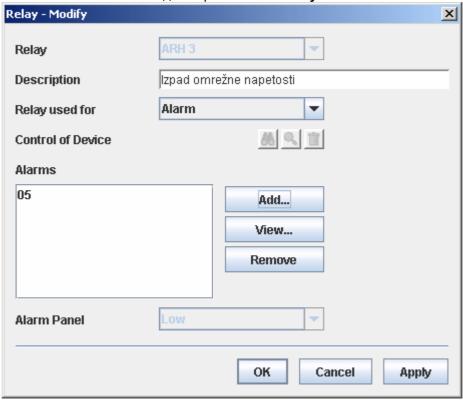
Critically high temp of rectifiers > Fan On TR

Если при вводе выбранных значений не выполнены требуемые условия, выводится соответствующее сообщение.

Заводская установка аварийных сигналов – изменение администратором значений в полях, окрашенных серым цветом, невозможно


Код	Актив- ность	Описание	Сроч- ность	Тип	Вклю- чение 1	Гисте- резис 1	Вклю- чение	Гисте- резис 2	Диапазон
01	enabled	BOOST CHARGING	LOW	Factory					
02	enabled	HIGH BATTERY VOLTAGE*	MIDDLE	Analog	57 (71) B	-1B			40.0 do 80.0 B
03	enabled	LOW BATTERY VOLTAGE*	MIDDLE	Analog	51(64) B	+ 1 B			40.0 do 80.0 B
04	enabled	CRITICALLY LOW BATTERY VOLTAGE*	HIGH	Analog	44 (55) B	+ 1 B			40.0 do 60.0 B
05	enabled	MAINS FAILURE	HIGH	Analog	163 B	+ 10 B	265 B	- 10 B	50 do 300 B
06	enabled	FUSE/CB FAILURE	HIGH	Factory					
07	enabled	MODULE FAILURE	HIGH	Factory					
08		AUDIO ALARM DISABLED	LOW	Factory					
09		FIRE	HIGH	Digital					
10		TRANSMISSION EQUIPMENT FAILURE	HIGH	Digital					
11		CRITICALLY HIGH TEMPERATURE OF ENVIRONMENT	HIGH	Analog	40° C	- 3° C			20 do 100° C
12		CRITICALLY LOW TEMPERATURE OF ENVIRONMENT	HIGH	Analog	5° C	+ 3° C			0 do 200° C
13		OPEN DOOR 1	LOW	Digital					
14		UNLOCKED DOOR 1	LOW	Digital					
15		OPEN DOOR 2	LOW	Digital					
16		UNLOCKED DOOR 2	LOW	Digital					
17	enabled	BATTERY CAPACITY MEASUREMENT	LOW	Factory					
19	enabled	FLAT RTC BATTERY	MIDDLE	Factory					
20		CRITICALLY HIGH TEMP OF	HIGH	Analog	55° C	- 5° C			20 do 100° C
21		SYMMETRY FAILURE	MIDDLE	Analog	5 %	- 1.5 %			2 do 10 %
22		INCONSISTENT EQUIPMENT	MIDDLE	Factory					
23	enabled	FAILURE OF RELAY	HIGH	Factory					
25	enabled	MAINTENANCE CHARGING	LOW	Factory					
27		GENERATOR FAILURE	HIGH	Digital					
28		FREQUENCY FAILURE	HIGH	Analog	47.5 Гц	+1 Гц	52.5 Гц	- 1	40 do 70 Гц
29		FAILURE OF AIR-CONDITIONER 1	LOW	Digital					
30		FAILURE OF AIR-CONDITIONER 2	LOW	Digital					
35		GENERATOR RUNNING	HIGH	Digital					
38	enabled	COMMUNICATION FAILURE	HIGH	Factory					
39	enabled	POWER-SUPPLY SHUT-OFF WARNING	HIGH	Factory					
40		USER DEFINED	HIGH	Digital					
64		USER DEFINED	HIGH	Digital					

^{*}Значения отличаются в зависимости от типа системы электропитания: 48 В или 60 В. В скобках указаны значения, действительные для системы электропитания 60 В.


24.6.10. Элемент Relay – управление реле

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Settings and Configuration > Relay**. После выполнения команды откроется таблица, содержащая установленные текущие значения реле системы.

Администратор может выбрать реле в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Relay**.

В этом окне администратор может в светлых полях записывать данные, а в окрашенных серым цветом полях читать данные. Пользователь может только читать:

- коды реле (**Relay**), например, ARH 4, где буквенное обозначение определяет блок, на котором находится реле (ARH);
- имя или описание реле (**Description**) с максимально 30 буквенно-цифровыми знаками;

- назначение реле (**Relay used for**), где на выбор имеется:
 - Control of Device (управление внешним устройством).
 - Alarm (передача аварийных сигналов) и
 - Alarm Panel (управление панелью аварийной сигнализации);
 - Not linked (реле не настроено и не подлежит управлению), заводская установка.

В зависимости от выбранного назначения реле окно обеспечивает администратору возможность записи, а пользователю – чтения данных определенных полей.

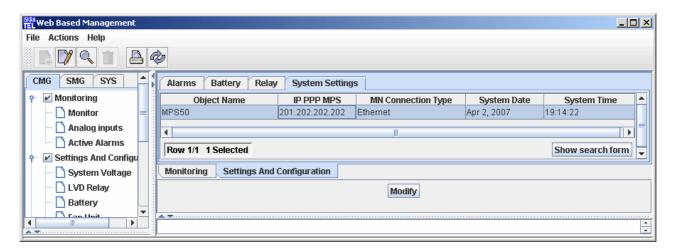
Выбор управления внешним устройством (Control of Device) позволяет:

- выбрать внешнее устройство щелчком на символе бинокля, где на выбор имеются четыре устройства, а щелчком на кнопке **ОК** подтвердить выбор, заводского определения входа нет;
- удалить предварительно выбранные (выделенные) внешние устройства щелчком на символе корзины.

Выбор передачи аварийных сигналов (Alarm) позволяет:

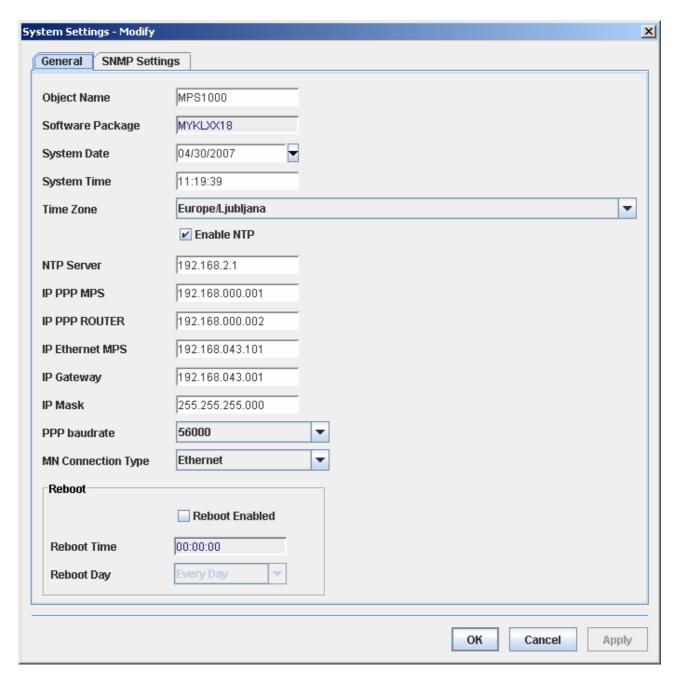
- добавлять аварийные сигналы щелчком на **Add**, после чего откроется окно **Alarms**, где у пользователя на выбор имеется 64 аварийных сигнала системы электропитания и окружающей среды, а подтверждается выбор щелчком на кнопке **OK**, заводского определения входа нет;
- удалять предварительно выбранный и отмеченный аварийный сигнал щелчком на кнопке **Remove**:
- читать подробности, относящиеся к предварительно выбранному и отмеченному аварийному сигналу, щелчком на кнопке **View**.

Выбор управления панелью аварийной сигнализации (**Alarm Panel**) позволяет администратору делать настройку управления реле:


- при появлении любого несрочного аварийного сигнала системы электропитания и окружающей ее среды путем выбора **Low**;
- при появлении любого срочного аварийного сигнала системы электропитания и окружающей ее среды путем выбора **Middle**;
- при появлении любого крайне срочного аварийного сигнала системы электропитания и окружающей ее среды путем выбора **High**.

Ввод данных подтверждается нажатием кнопки **ОК**. Одновременно выполняется выход из окна настроек реле.

24.6.11. Элемент System Settings – системные параметры


Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Settings and Configuration > System Settings**. После выполнения команды откроется таблица, содержащая лишь несколько установленных в тот момент параметров системы.

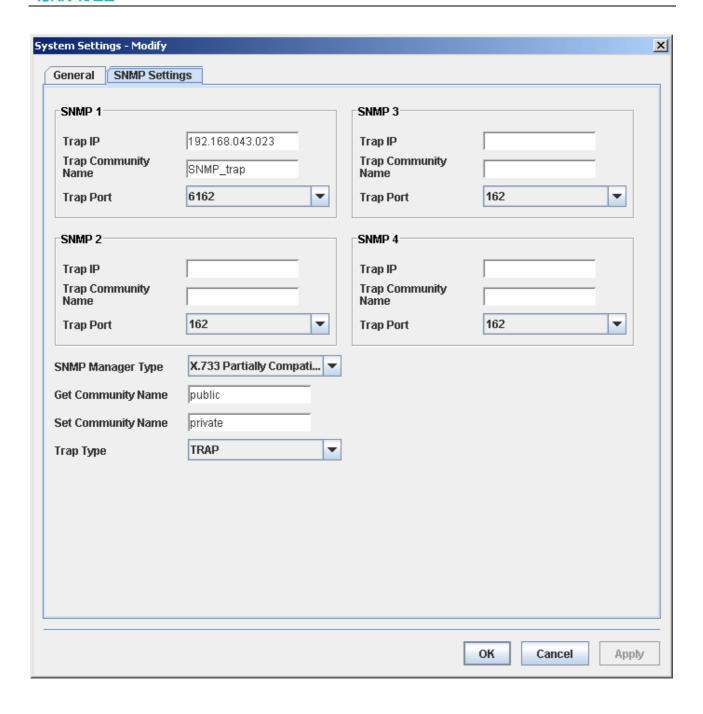
Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View.** После выполнения команды откроется окно **System Settings** с двумя вкладками, **General** и **SNMP Settings**.

Вкладка **General** позволяет администратору делать записи данных в светлых полях и читать данные в полях, окрашенных серым цветом. Пользователь может только читать:

- имя системы (**Object Name**), содержащее максимально 30 буквенно-цифровых знаков, на заводе установлено имя **MPS 1000**;
- код программного пакета (Software Package);
- дату (System Date);
- время (System Time);
- временные зоны (**Time Zone**);
- блокировки/разблокировки сервера NTP (Enable NTP), на заводе установлена блокировка;
- сетевой адрес сервера NTP (NTP Server), на заводе установлено значение 192.168.2.1;
- сетевой адрес системы MPS1000 для протокола PPP через интерфейс RS232 (**IP PPP MPS**), на заводе установлено значение 192.168.2.3;
- сетевой адрес маршрутизатора, к которому система MPS1000 подключена, для протокола PPP через интерфейс RS232 (**IP PPP ROUTER**), на заводе установлено значение 192.168.2.4;

- сетевой адрес системы MPS1000 (**IP Ethernet MPS**), на заводе установлено значение 192.168.2.1:
- сетевой адрес шлюза системы MPS1000 (**IP Gateway**), на заводе установлено значение 192.168.2.2;
- маску сетевого адреса системы MPS1000 (**IP Mask**), на заводе установлено значение 255.255.255.0;
- скорость передачи данных в узел управления через интерфейс RS232 (**PPP baudrate**), на заводе установлена скорость 56000;
- способ соединения с узлом управления (MN Connection Type), где на выбор имеется
 - **RS232** (непосредственное подключение к порту RS232 местного ПК).
 - SI2000 (непосредственное подключение к маршрутизатору узла коммутации SI2000),
 - Ethernet (сетевое соединение с узлом управления), заводская установка;
- блокировку/деблокировку периодического сброса (reset) микропроцессора (**Reboot Enabled**), на заводе установлена блокировка;
- время, при наступлении которого производится периодический сброс микропроцессора (**Reboot Time**);
- день, когда производится периодический сброс микропроцессора (Reboot Day).

Ввод данных подтверждается нажатием кнопки Apply или OK.

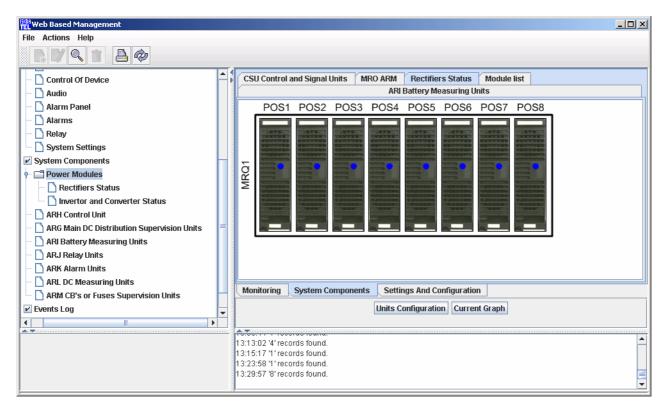

Вкладка **System Settings** позволяет администратору делать настройку четырех узлов управления. Пользователь может только читать сделанные настройки.

Для узлов управления в поле **SNMP** производится настройка или чтение следующих параметров:

- сетевые адреса максимально четырех узлов управления (Trap IP);
- пароль для передачи аварийных сигналов менеджеру SNMP с помощью команды **Trap** (**Trap Community Name**);
- порт, через который передаются сообщения с помощью команды Trap (**Trap Port**), где на выбор имеется:
 - 6162 для узла управления версии V5 или V6,
 - 162 для узла управления версии V6,
- тип узла управления (SNMP Manager Type), где на выбор имеется:
 - X733 Partially Compatible для узла управления V5,
 - X733 Fully Compatible V6;
- пароль доступа к агенту SNMP с помощью команд GetRequest, GetNextRequest и GetBulk (Get Community Name):
- пароль доступа к агенту SNMP с помощью команды SetRequest (Set Community Name);
- тип сообщений, переданных с помощью команды Trap (Trap type), где на выбор имеется:
 - INFORM V6.
 - TRAP V5 или V6;

Ввод данных подтверждается нажатием кнопки **Apply** или **OK**.

24.7. Компоненты системы электропитания

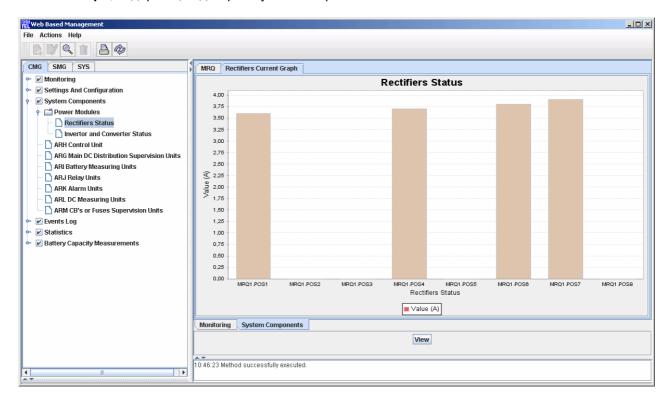

Возможность контроля и конфигурирования компонентов системы электропитания обеспечивается группой элементов **System Components**. В группе содержатся следующие элементы:

- Power module: контроль и конфигурирование блоков питания системы электропитания.
- ARH Control Unit: контроль блока ARH.
- ARG Main DC Distribution Supervison Units: контроль и конфигурирование контрольных блоков ARG.
- ARI Battery Measuring Units: контроль и конфигурирование блоков ARI.
- ARJ Relay Units: контроль и конфигурирование блоков ARJ.
- ARK Alarm Units: контроль и конфигурирование блоков ARK.
- ARL DC Measuring Units: контроль и конфигурирование блоков ARL.
- ARM CB's or Fuses Supervison Units: контроль и конфигурирование блоков ARM.

24.7.1. Элемент Power Modules – блоки питания

24.7.1.1. Графическое отображение выпрямителей и тока выпрямителей

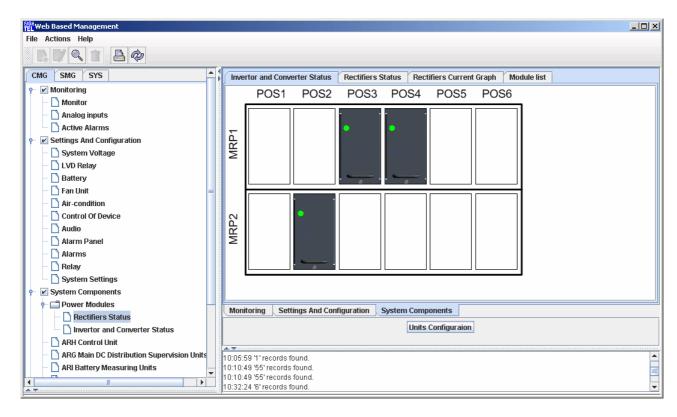
Пользователь имеет возможность графического отображения выпрямителей (преобразователей AC/DC). Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **System Components > Power Modules > Rectifiers Status**. После выполнения команды откроется окно, в котором наглядно отображаются встроенные выпрямители. Слоты в секции, в которых не установлен выпрямитель, пустые.



На символе выпрямителя есть лампочка, цвет которой зависит от состояния выпрямителя:

- зеленый цвет означает, что выпрямитель работает;
- красный цвет означает, что выпрямитель неисправен (аварийный сигнал А07);
- синий цвет означает, что во время проверки оборудованности системы контрольный блок выявил изменение (выпрямитель был добавлен, вынут или заменен) и генерировал аварийный сигнал **A22**.

Администратор в окне Rectifiers Status щелчком на кнопке Current Graph откроет окно Rectifiers Current Graph, содержащее диаграмму тока выпрямителей AC/DC.


Пользователь имеет также возможность прямого доступа к данным о выпрямителях из главного вебсайта приложения MPS **Web Based Management**, открывающегося после успешной регистрации пользователя в системе, или путем выбора вкладки функциональной группы **CMG** и выполнения команды **Monitoring > Monitor**.

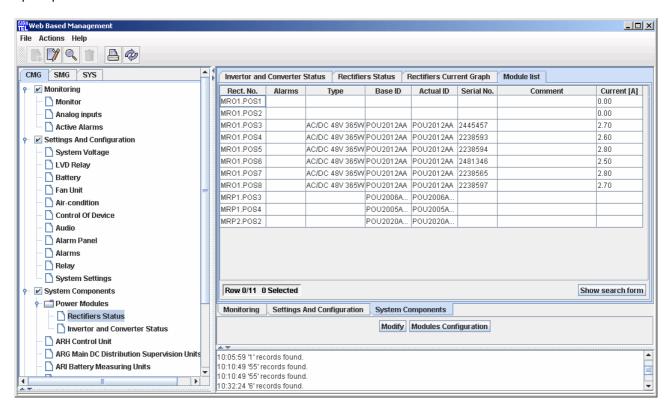
В окне Monitor пользователь должен выбрать символ AC/DC и после щелчка на нем откроется окно Rectifiers Status.

24.7.1.2. Графическое отображение инверторов и преобразователей постоянного тока (DC/DC)

Пользователь имеет возможность графического отображения инверторов (преобразователей DC/AC) и вольтодобавочных конверторов (DC/DC). Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **System Components > Power Modules > Invertor and Converter Status**. После выполнения команды откроется окно, в котором наглядно отображаются встроенные конверторы и инверторы.

На символе преобразователя есть лампочка, цвет которой зависит от состояния преобразователя:

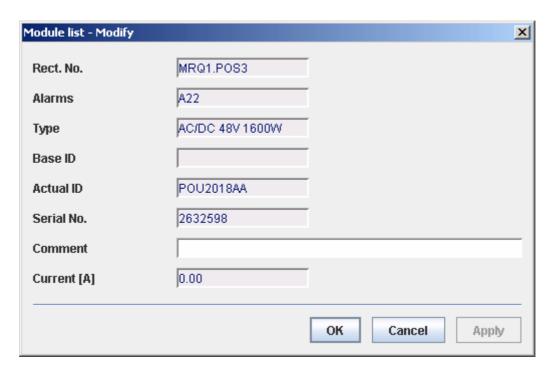
- зеленый цвет означает, что преобразователь работает;
- красный цвет означает, что преобразователь неисправен (аварийный сигнал А07);
- синий цвет означает, что во время проверки оборудованности системы контрольный блок выявил изменение (преобразователь был добавлен, вынут или заменен) и генерировал аварийный сигнал **A22**.


Пользователь имеет также возможность прямого доступа к данным о преобразователях DC/AC (инверторах) и преобразователях DC/DC из главного веб-сайта приложения MPS **Web Based Management**, открывающегося после успешной регистрации пользователя в системе, или путем выбора вкладки функциональной группы **CMG** и выполнения команды **Monitoring > Monitor.**

В окне Monitor пользователь должен выбрать символ DC/DC или DC/AC и после щелчка на одном из них откроется окно Invertor and Converter Status.

24.7.1.3. Табличное отображение преобразователей

Администратор в окне Rectifiers Status или в окне Invertor and Converter Status щелчком на кнопке Units Configuration откроет окно Module List, содержащее таблицу всех встроенных в систему преобразователей.



Окно дает администратору и пользователю возможность чтения (просмотра) следующих данных:

- обозначение преобразователя (**Rect. No.**), в котором первая часть означает секцию блока, в который встроен преобразователь, а вторая часть обозначения указывает на позицию преобразователя в секции;
- аварийный сигнал (Alarms), т.е. код аварийного сигнала;
- тип преобразователя (Туре);
- последний администрированный код преобразователя (Base ID);
- фактический код преобразователя (Actual ID);
- серийный номер преобразователя (Serial No.);
- комментарий к преобразователю (Comment);
- ток преобразователя (Current [A]).

Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Module list**.

В окне администратор может вписать комментарий, содержащий до 30 буквенно-цифровых знаков.

Ввод данных подтверждается нажатием кнопки Apply или ОК.

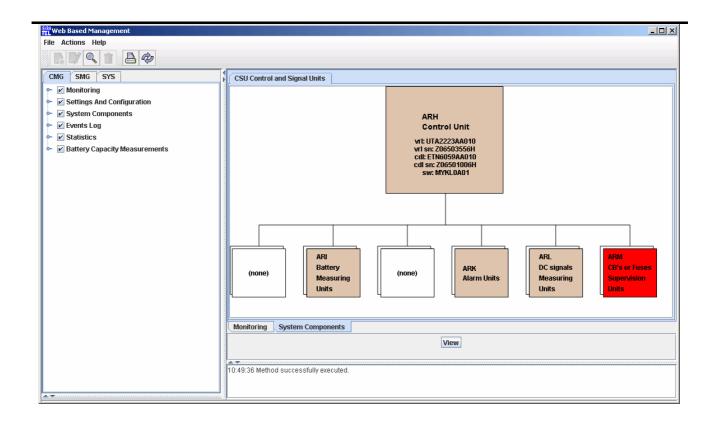
24.7.1.4. Автоконфигурация преобразователей

Администратор в окне Rectifiers Status или в окне Invertor and Converter Status щелчком на кнопке Units Configuration откроет окно Module List, содержащее таблицу всех встроенных в систему преобразователей. Затем администратор щелчком на кнопке Modules Configuration выполнит автоконфигурирование преобразователей. Этим он подтвердит свое согласие со встроенными новыми преобразователями или свое согласие с удалением прежних преобразователей. После этого исчезнут все аварийные сигналы A22 Inconsistent Equipment.

24.7.2. Элемент ARH Control Unit – контрольный блок

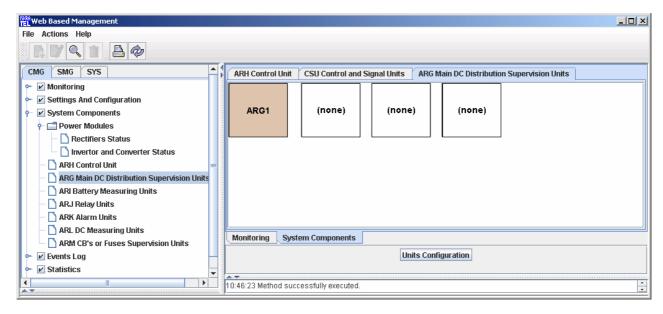
Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **System Components > ARH Control Unit**. После выполнения команды откроется таблица, содержащая данные о блоке ARH. Пользователь может выбрать строку в таблице и выполнить команду **View**. После выполнения команды откроется окно **ARH Control Unit**.

Окно дает пользователю возможность чтения (просмотра) следующих данных:


- версия программного пакета в блоке ARH (**SW Version**);
- код платы VRL, встроенной в блоке ARH (VRL Code);
- серийный номер платы VRL, встроенной в блоке ARH (VRL Serial Number);
- код платы CDL, встроенной в блоке ARH (CDL Code);
- серийный номер платы CDL, встроенной в блоке ARH (CDL Serial Number).

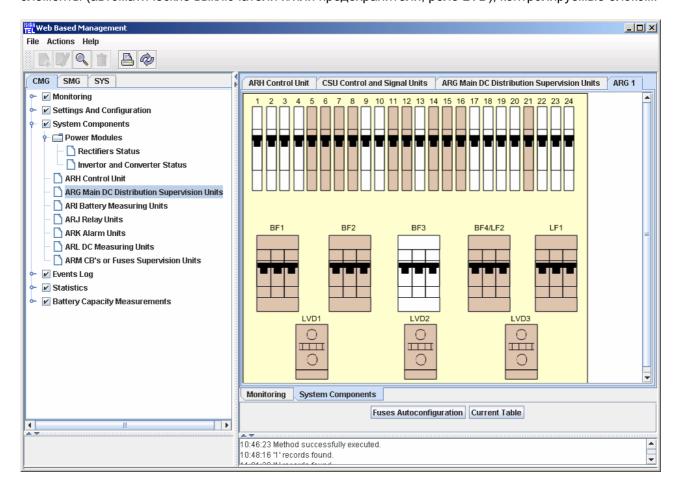
Выход из окна производится щелчком на кнопке Close.

Пользователь имеет также возможность прямого доступа к данным о блоке ARH из главного вебсайта приложения MPS **Web Based Management**, открывающегося после успешной регистрации пользователя в системе или путем выбора вкладки функциональной группы **CMG** и выполнения команды **Monitoring > Monitor**.


В окне Monitor пользователь должен выбрать символ Control and Signal units, после щелчка на котором откроется окно CSU Control and Signal units, содержащее данные о блоке ARH.

24.7.3. Элемент ARG Main DC Distribution Supervison Units - контрольные блоки распределения постоянного тока

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **System Components > ARG Main DC Distribution Supervison Units**. После выполнения команды откроется графическое окно **ARG Main DC Distribution Supervison Units**, содержащее символы четырех блоков ARG.


Окно дает администратору возможность подтверждения встроенных блоков ARG, а пользователю – чтения данных.

Окраска символа блока ARG зависит от состояния блока:

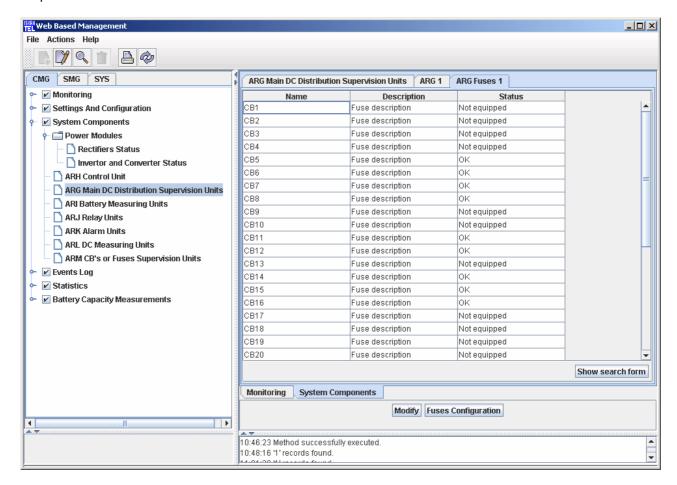
- белый цвет означает, что блок не встроен в систему электропитания, или что контрольный блок его не может выявить;
- коричневый цвет означает, что блок встроен и имеет коммуникацию с контрольным блоком;
- красный цвет означает, что блок неисправен или был удален из системы (аварийный сигнал **A38**).

Администратор может щелчком на кнопке Units Configuration подтвердить, что блок ARG был намеренно удален из системы, и тем самым убрать аварийный сигнал A38 Communication Failure ARGx.

Пользователь может выбрать символ блока ARG и двойным щелчком на нем выполнить команду отображения блока ARG. После выполнения команды откроется окно **ARG x**, в котором отображены элементы (автоматические выключатели и/или предохранители, реле LVD), контролируемые блоком.

Символ автоматического выключателя или предохранителя имеет окраску, зависящую от их состояния:

- белый цвет означает, что автоматический выключатель не встроен в систему электропитания или выключен, или что предохранитель не установлен или перегорел;
- коричневый цвет означает, что автоматический выключатель включен, или что предохранитель в порядке;



- красный цвет означает, что автоматический выключатель выключен или удален из системы, или что предохранитель перегорел или был вынут (аварийный сигнал **A06**);
- синий цвет означает, что автоматический выключатель был позже встроен и включен и не контролируется, или что предохранитель был позже встроен и не контролируется.

Окраска символа реле LVD зависит от состояния:

- коричневый цвет означает, что реле LVD включено;
- красный цвет означает, что реле LVD выключено (аварийный сигнал A23).

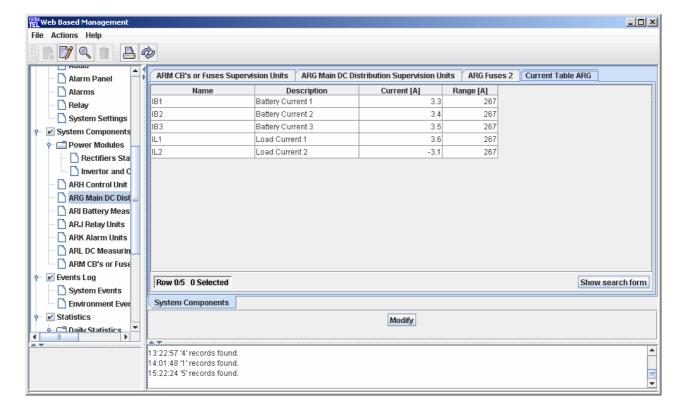
После щелчка на символе автоматического выключателя, предохранителя или на кнопке **Fuses Table** откроется окно **ARG Fuses x**.

Окно **ARG Fuses х** дает администратору возможность записи, а пользователю – чтения следующих данных:

- обозначение автоматического выключателя или предохранителя (Name);
- описание автоматического выключателя или предохранителя (Description);
- состояние автоматического выключателя или предохранителя (Status).

Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **ARG Fuses x – Modify**.

В окне администратор может ввести описание автоматического выключателя или предохранителя, содержащее до 30 буквенно-цифровых знаков.

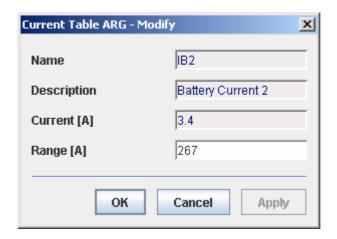

Ввод данных подтверждается нажатием кнопки Apply или ОК.

24.7.3.1. Автоконфигурация предохранителей

Администратор может в окне **ARG** х щелчком на кнопке **Fuses Autoconfiguration** подтвердить, что предохранители и автоматические выключатели были намеренно удалены или добавлены в систему. Тем самым будет снят аварийный сигнал **A06 Fuse/CB Failure**, а автоматические выключатели или предохранители, которые до этого не контролировались, начнут контролироваться.

24.7.3.2. Значения тока, измеренные с помощью блока ARG

Администратор может в окне ARG x щелчком на кнопке Current Table открыть окно Current Table ARG.



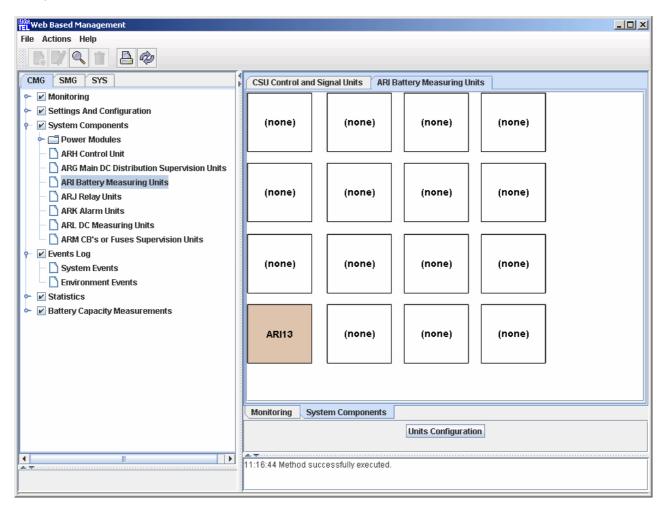
Окно **Current Table ARG** позволяет администратору выполнять запись, а пользователю – чтение следующих данных:

- обозначение тока (Name);
- описание тока (Description);
- измеренное значение тока (Current [A]);
- диапазон измерения (Range [A]).

Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Current Table ARG – Modify**.

В этом окне администратор может ввести диапазон измерения или значение тока, при котором падение напряжения на шунтирующем резисторе составляет 60 мВ.

Ввод данных подтверждается нажатием кнопки **Apply** или **OK**.

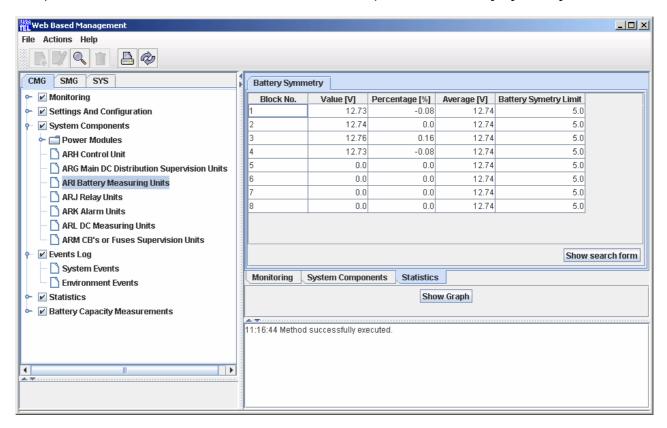

Пользователь имеет также возможность прямого доступа к данным о контрольных блоках распределения постоянного тока ARG из главного веб-сайта приложения MPS **Web Based Management**, открывающегося после успешной регистрации пользователя в системе или путем выбора вкладки функциональной группы **CMG** и выполнения команды **Monitoring > Monitor.**

В окне Monitor пользователь должен выбрать символ Control and Signal units, после щелчка на котором откроется окно CSU Control and Signal units. Щелчком на символе ARG Main DC Distribution Supervison Units открывается окно ARG Main DC Distribution Supervison Units.

24.7.4. Элемент ARI Battery Measuring Units – блоки измерения напряжения аккумуляторов батареи

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **System Components > ARI Battery Measuring Units**. После выполнения команды откроется графическое окно **ARI Battery Measuring Units**, содержащее символы шестнадцати блоков ARI.

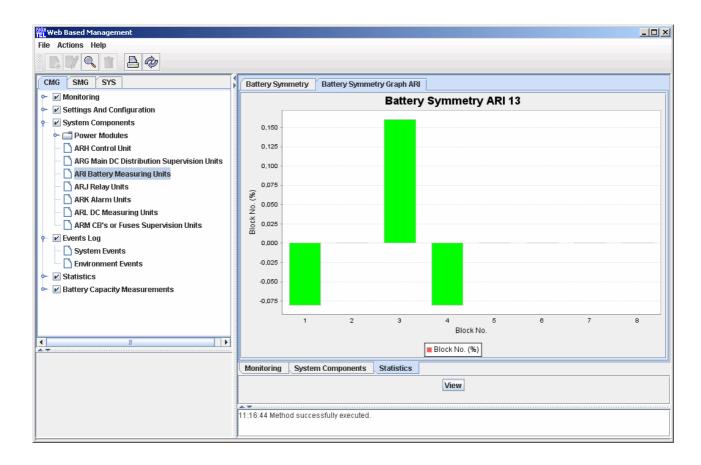
Окно дает администратору возможность подтверждения встроенных блоков ARI, а пользователю – чтения данных.


Окраска символа блока ARI зависит от состояния блока:

- белый цвет означает, что блок не встроен в систему электропитания, или что контрольный блок его не может выявить;
- коричневый цвет означает, что блок встроен и имеет коммуникацию с контрольным блоком;
- красный цвет означает, что блок неисправен или был удален из системы (аварийный сигнал **A38**).

Администратор может щелчком на кнопке Units Configuration подтвердить, что блок ARI был намеренно удален из системы, и тем самым убрать аварийный сигнал A38 Communication Failure ARIx.

Пользователь может выбрать символ блока ARI и двойным щелчком на нем выполнить команду отображения блока ARI . После выполнения команды откроется окно **Battery Symmetry**.

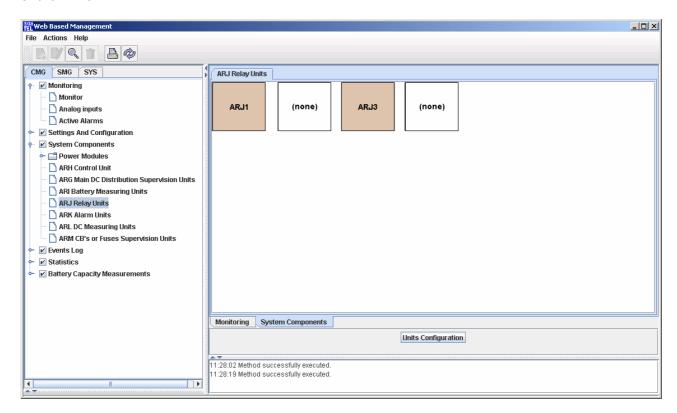


Для каждого аккумулятора батареи приводятся следующие данные:

- напряжение аккумулятора в В (Value [V]);
- асимметрия аккумулятора в % (Percentage [%]);
- среднее значение напряжения аккумулятора в В (Average [V]);
- аварийное значение в % (Battery Symmetry Limit [%]).

Администратор в окне Battery Symmetry щелчком на кнопке Show Graph откроет окно Battery Symmetry ARI x, содержащее асимметрии аккумуляторов батареи. Если асимметрия аккумулятора батареи превысит установленный аварийный уровень, столбец этого аккумулятора окрасится красным цветом.

Пользователь имеет также возможность прямого доступа к данным об блоках измерения напряжения аккумуляторов батареи (ARI) из главного веб-сайта приложения MPS **Web Based Management**, открывающегося после успешной регистрации пользователя в системе или путем выбора вкладки функциональной группы **CMG** и выполнения команды **Monitoring > Monitor.**

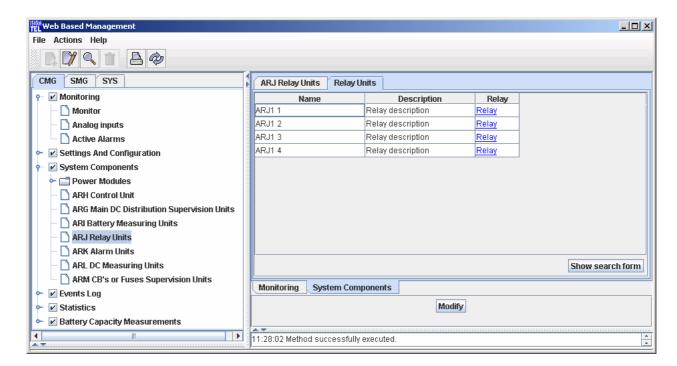

В окне Monitor пользователь должен выбрать символ BATTERIES и после щелчка на нем откроется окно ARI Battery Measuring Units.

Аналогично в окне Monitor пользователь может выбрать символ Control and Signal units, после щелчка на котором откроется окно CSU Control and Signal units. Щелчком на символе ARI Battery Measuring Units ему откроется окно ARI Battery Measuring Units.

24.7.5. Элемент ARJ Relay Units – блоки управление реле

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **System Components > ARJ Relay Units**. После выполнения команды откроется графическое окно **ARJ Relay Units**, содержащее символы четырех блоков ARJ.

Окно дает администратору возможность подтверждения встроенных блоков ARJ, а пользователю – чтения данных.


Окраска символа блока ARJ зависит от состояния блока:

- белый цвет означает, что блок не встроен в систему электропитания, или что блок управления его не может выявить;
- коричневый цвет означает, что блок встроен и имеет коммуникацию с блоком управления;
- красный цвет означает, что блок неисправен или был удален из системы (аварийный сигнал **A38**).

Администратор может щелчком на кнопке Units Configuration подтвердить, что блок ARJ был намеренно удален из системы, и тем самым убрать аварийный сигнал A38 Communication Failure ARJx.

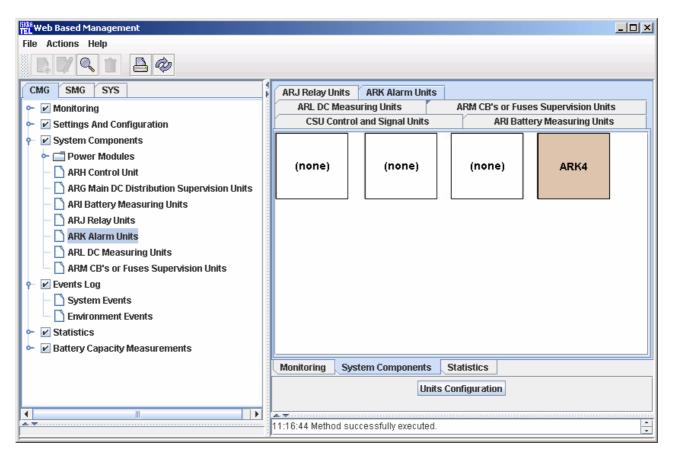
Пользователь может выбрать символ блока ARJ и двойным щелчком на нем выполнить команду отображения блока ARJ. После выполнения команды откроется окно **Relay Units**, в котором отображаются подробности реле блока.

Окно **Relay units** дает администратору возможность ввода, а пользователю чтения следующих данных:

- обозначение реле (Name);
- описание реле (Description), содержащее до 30 буквенно-цифровых знаков;
- способ управления реле (Not linked, Alarm, Alarm Panel, Control of Device, Air-Condition).

Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Relay Units – Modify**.

Ввод данных подтверждается нажатием кнопки **Apply** или **OK**.

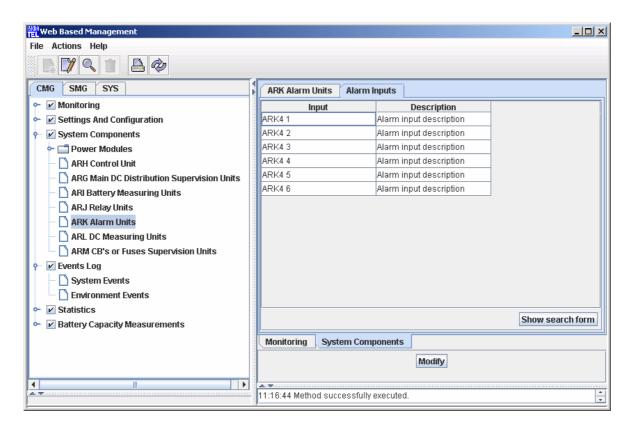

Пользователь имеет также возможность прямого доступа к данным о блоках ARJ из главного вебсайта приложения MPS Web Based Management, открывающегося после успешной регистрации пользователя в системе или путем выбора вкладки функциональной группы CMG и выполнения команды Monitoring > Monitor.

В окне Monitor пользователь должен выбрать символ Control and Signal units, после щелчка на котором откроется окно CSU Control and Signal units. Щелчком на символе ARJ Relay Units ему откроется окно ARJ Relay Units.

24.7.6. Элемент ARK Alarm Units – блоки сбора аварийных сигналов

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **System Components > ARK Alarm Units**. После выполнения команды откроется графическое окно **ARK Alarm Units**, содержащее символы четырех блоков ARK.

Окно дает администратору возможность подтверждения встроенных блоков ARK, а пользователю – чтения данных.


Окраска символа блока ARK зависит от состояния блока:

- белый цвет означает, что блок не встроен в систему электропитания, или что контрольный блок его не может выявить;
- коричневый цвет означает, что блок встроен и имеет коммуникацию с контрольным блоком;
- красный цвет означает, что блок неисправен или был удален из системы (аварийный сигнал **A38**).

Администратор может щелчком на кнопке Units Configuration подтвердить, что блок ARK был намеренно удален из системы, и тем самым убрать аварийный сигнал A38 Communication Failure ARKx.

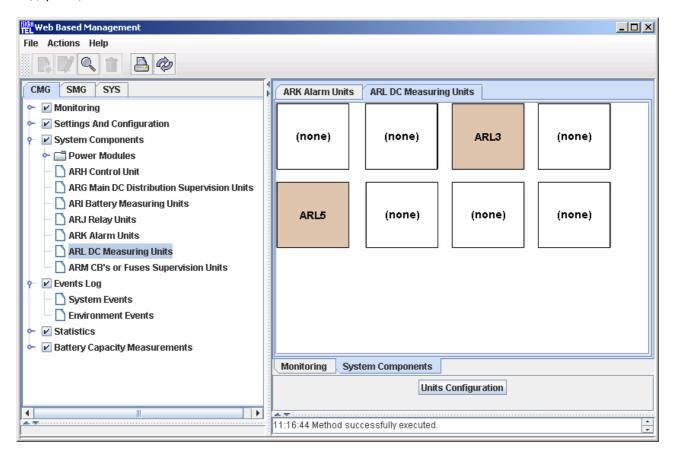
Пользователь может выбрать символ блока ARK и двойным щелчком на нем выполнить команду отображения блока ARK. После выполнения команды откроется окно **Alarm Inputs**, в котором отображаются входы аварийных сигналов блока ARK.

Окно **Alarm Inputs** дает администратору возможность ввода, а пользователю чтения следующих данных:

- обозначение входа (Input).
- описание реле (**Description**), содержащее до 30 буквенно-цифровых знаков.

Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Alarm Inputs – Modify**.

Ввод данных подтверждается нажатием кнопки Apply или OK.


Пользователь имеет также возможность прямого доступа к данным о блоках ARK из главного вебсайта приложения MPS **Web Based Management**, открывающегося после успешной регистрации пользователя в системе или путем выбора вкладки функциональной группы **CMG** и выполнения команды **Monitoring > Monitor**.

В окне Monitor пользователь должен выбрать символ Control and Signal units, после щелчка на котором откроется окно CSU Control and Signal units. Щелчком на символе ARK Alarm Units ему откроется окно ARK Alarm Units.

24.7.7. Элемент ARL DC Measuring Units – блоки измерения напряжения постоянного тока

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **System Components > ARL DC Measuring Units**. После выполнения команды откроется графическое окно **ARL DC Measuring Units**, содержащее символы восьми блоков ARL.

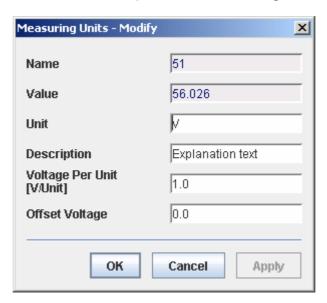
Окно дает администратору возможность подтверждения встроенных блоков ARL, а пользователю – чтения данных.

Окраска символа блока ARL зависит от состояния блока:

- белый цвет означает, что блок не встроен в систему электропитания, или что контрольный блок его не может выявить;
- коричневый цвет означает, что блок встроен и имеет коммуникацию с контрольным блоком;
- красный цвет означает, что блок неисправен или был удален из системы (аварийный сигнал **A38**).

Администратор может щелчком на кнопке Units Configuration подтвердить, что блок ARL был намеренно удален из системы, и тем самым убрать аварийный сигнал A38 Communication Failure ARLx.

Пользователь может выбрать символ блока ARL и двойным щелчком на нем выполнить команду отображения блока ARL. После выполнения команды откроется окно **Measuring Units**, в котором отображаются два измерительных входа и их настройки.


Пользователь может выбрать символ блока ARL и двойным щелчком на нем выполнить команду отображения блока ARL. После выполнения команды откроется окно **Measuring Units**, в котором отображаются два измерительных входа и их настройки.

Окно **Measuring Units** дает администратору возможность ввода, а пользователю чтения следующих данных:

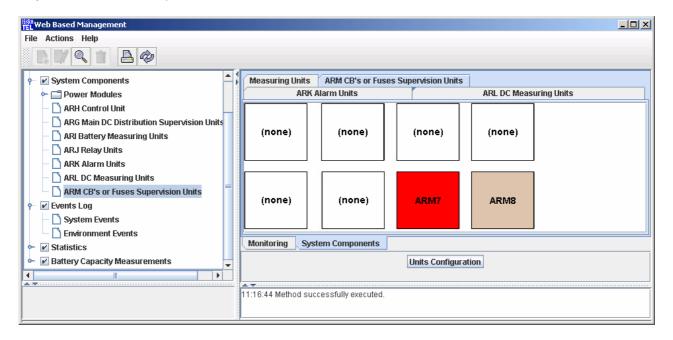
- обозначение входа (Name);
- измеренные значения (Value);
- единицы измерения (Unit);
- описание входа (Description), содержащее до 30 буквенно-цифровых знаков;
- параметр преобразования (Voltage Per Unit [V/Unit];
- смещение ноля (Offset Voltage).

Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Measuring Units – Modify**.

Ввод данных подтверждается нажатием кнопки **Apply** или **OK**.

Примеры:

- INPUT 31: измерение напряжения фазы 1 с помощью измерителя, который преобразует входное напряжение 300 В переменного тока (AC) в 3 В постоянного тока (DC). Пользователь введет в поле **Unit** единицу измерения 'V AC', в поле **Voltage Per Unit** [V/Unit] — значение '0.01' (3/300), а в поле **Offset Voltage** — значение '0';


- INPUT 32 : измерение температуры в помещении с помощью датчика, имеющего при 0°C напряжение 0.5 В, а затем напряжение линейно возрастает с шагом по 0.04 В/°C. Пользователь введет в поле Unit единицу измерения '°C', в поле Voltage Per Unit [V/Unit] значение '0.04', а в поле Offset Voltage значение '0.5';
- INPUT 31 : измерение тока с помощью шунтирующего резистора 60 мВ/450 А. Пользователь введет в поле **Unit** единицу 'A', в поле **Voltage Per Unit [V/Unit]** значение '0.0001333' (450/0,6), а в поле **Offset Voltage** значение '0';

Пользователь имеет также возможность прямого доступа к данным об измерительных блоках сигналов постоянного тока (DC) ARL из главного веб-сайта приложения MPS **Web Based Management**, открывающегося после успешной регистрации пользователя в системе или путем выбора вкладки функциональной группы **CMG** и выполнения команды **Monitoring > Monitor**.

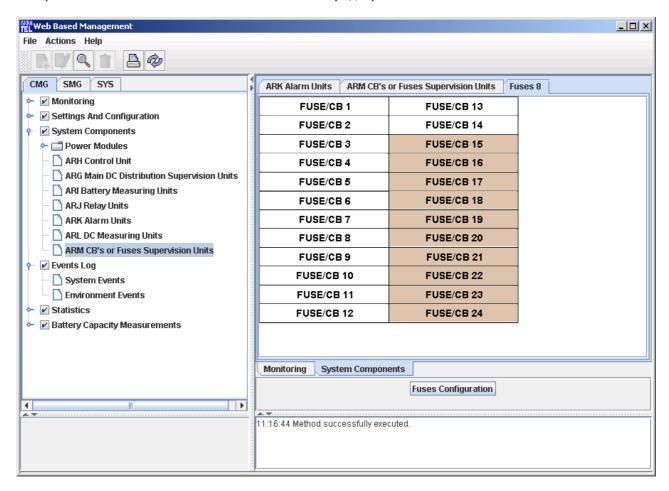
В окне Monitor пользователь должен выбрать символ Control and Signal units, после щелчка на котором откроется окно CSU Control and Signal units. Щелчком на символе ARL DC Measuring Units ему откроется окно ARL DC Measuring Units.

24.7.8. Элемент ARM CB's or Fuses Supervison Units – блоки контроля автоматических выключателей или предохранителей

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **System Components > ARM CB's or Fuses Supervison Units**. После выполнения команды откроется графическое окно **ARM CB's or Fuses Supervison Units**, содержащее символы восьми блоков ARM.

Окно дает администратору возможность подтверждения встроенных блоков ARM, а пользователю – чтения данных.

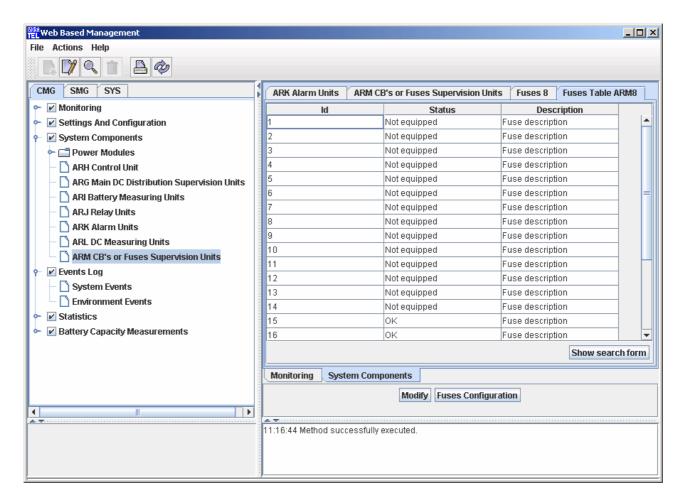
Окраска символа блока ARM зависит от состояния блока:


• белый цвет означает, что блок не встроен в систему электропитания, или что контрольный блок его не может выявить;

- коричневый цвет означает, что блок встроен и имеет коммуникацию с контрольным блоком;
- красный цвет означает, что блок неисправен или был удален из системы (аварийный сигнал **A38**).

Администратор может щелчком на кнопке Units Configuration подтвердить, что блок ARM был намеренно удален из системы, и тем самым убрать аварийный сигнал A38 Communication Failure ARMx.

Пользователь может выбрать символ блока ARM и двойным щелчком на нем выполнить команду отображения блока ARM. После выполнения команды откроется окно **Fuses ARM x**, в котором отображаются автоматические выключатели или предохранители.



Символ автоматического выключателя или предохранителя имеет окраску, зависящую от их состояния:

- белый цвет означает, что автоматический выключатель не встроен в систему электропитания или выключен, или что предохранитель не установлен или перегорел;
- коричневый цвет означает, что автоматический выключатель включен, или что предохранитель в порядке;
- красный цвет означает, что автоматический выключатель выключен или удален из системы, или что предохранитель перегорел или был вынут (аварийный сигнал **A06**);
- синий цвет означает, что автоматический выключатель был позже встроен и включен и не контролируется, или что предохранитель был позже встроен и не контролируется.

После щелчка на символе автоматического выключателя, предохранителя или на кнопке Fuses Table откроется окно Fuses Table ARM x.

Окно **Fuses Table ARM х** дает администратору возможность записи, а пользователю — чтения следующих данных:

- обозначение автоматического выключателя или предохранителя (Name);
- описание автоматического выключателя или предохранителя (Description);
- состояние автоматического выключателя или предохранителя (Status).

Администратор может выбрать строку в таблице и выполнить команду **Modify**, а пользователь – команду **View**. После выполнения команды откроется окно **Fuses Table ARM x – Modify**.

В окне администратор может ввести описание автоматического выключателя или предохранителя, содержащее до 30 буквенно-цифровых знаков.

Ввод данных подтверждается нажатием кнопки Apply или OK.

24.7.8.1. Автоконфигурация предохранителей

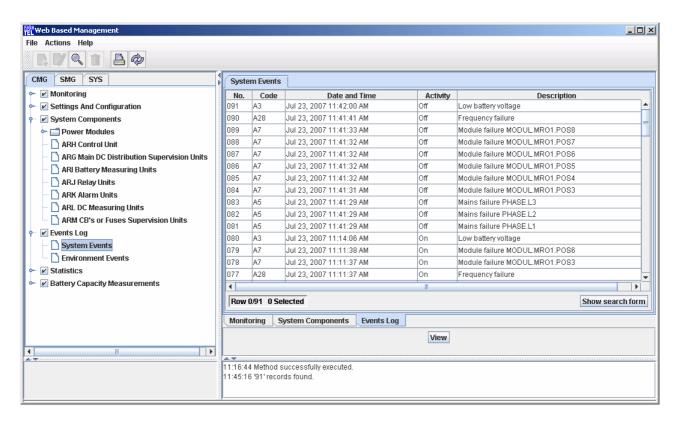
Администратор может в окне **Fuses ARM x** или **Fuses Table ARM x** щелчком на кнопке **Fuses Configuration** подтвердить, что предохранители и автоматические выключатели были намеренно удалены или добавлены в систему. Тем самым будет снят аварийный сигнал **A06 Fuse/CB Failure**, а автоматические выключатели или предохранители, которые до этого не контролировались, начнут контролироваться.

Пользователь имеет также возможность прямого доступа к данным о контрольных блоках автоматических выключателей ARM из главного веб-сайта приложения MPS **Web Based Management**, открывающегося после успешной регистрации пользователя в системе или путем выбора вкладки функциональной группы **CMG** и выполнения команды **Monitoring > Monitor.**

В окне Monitor пользователь должен выбрать символ Control and Signal units, после щелчка на котором откроется окно CSU Control and Signal units. Щелчком на символе ARM CB's or Fuses Supervison Units ему откроется окно ARM CB's or Fuses Supervison Units.

24.8. Хронология событий

Пользователь может посмотреть 400 последних событий системы электропитания и 200 событий окружающей среды. Такая возможность обеспечивается группой элементов **Event Log.**


В группе содержатся следующие элементы:

- System Events: служит для отображения событий системы электропитания.
- Environment Events: служит для отображения событий окружающей среды.

24.8.1. Элемент System Events – хронология системы электропитания

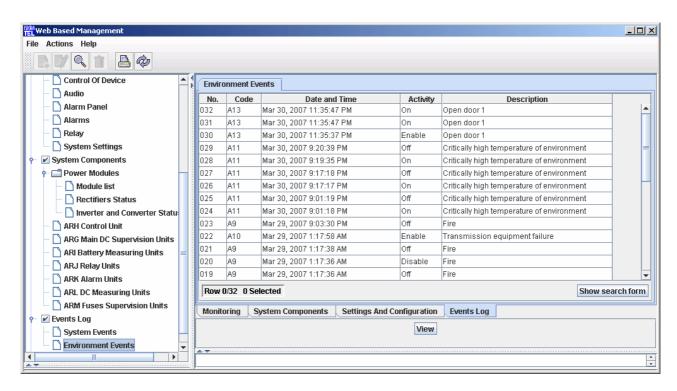
Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Events Log > System Events**. После выполнения команды откроется таблица, содержащая 400 последних аварийных сигналов.

Окно дает администратору и пользователю возможность чтения (просмотра) следующих данных:

- порядковый номер события (No.);
- код события (**Code**), например, код Ах используется для аварийного сигнала, а Рх для изменения параметра;
- дата и время регистрации события (Туре);
- активность (**Activity**), **On** для регистрации аварийного сигнала, **Off** для снятия аварийного сигнала, **Enable** для включения (разблокировки) функции или аварийного сигнала, **Disabel** для выключения (блокировки) функции или аварийного сигнала, **Changed** для изменения параметра;
- описание события (Description).

К хронологии системы электропитания относятся следующие события:

- аварийные сигналы
 - ускоренный заряд батарей A01 BOOST CHARGING:
 - высокое напряжение батареи A02 HIGH BATTERY VOLTAGE;
 - низкое напряжение батареи A03 LOW BATTERY VOLTAGE;
 - критически низкое напряжение батареи A04 CRITICALLY LOW BATTERY VOLTAGE;
 - неисправность электросети A05 MAINS FAILURE;
 - отказ предохранителя/автоматического выключателя A06 FUSE/CB FAILURE;
 - отказ преобразователя A07 MODULE FAILURE;
 - отключение звукового сигнала A08 AUDIO ALARM DISABLED;
 - измерение емкости батареи A17 BATTERY CAPACITY MEASUREMENT;
 - разряженная батарея на RTC A19 FLAT RTC BATTERY;
 - критически высокая температура выпрямителей A20 CRITICALLY HIGH TEMPERATURE OF RECTIFIERS:
 - критическая асимметрия аккумуляторов A21 SYMMETRY FAILURE;
 - несоответствие оборудования A22 INCONSISTENT EQUIPMENT;
 - отказ реле LVD A23 FAILURE OF RELAY;
 - индивидуальный подзаряд батареи A24 MAINTENANCE CHARGING;



- отказ генератора A27 GENERATOR FAILURE;
- неправильная сетевая частота A28 FREQUENCY FAILURE;
- генератор работает A35 GENERATOR RUNNING;
- отказ в коммуникации A38 COMMUNICATION FAILURE;
- предупреждение о выключении системы электропитания A39 POWER-SUPPLY SHUT-OFF WARNING;
- блокировки/разблокировки аварийных сигналов
 - заряд батарей A01 BOOST CHARGING;
 - критически высокая температура выпрямителей A20 CRITICALLY HIGH TEMPERATURE OF RECTIFIERS:
 - критическая асимметрия аккумуляторов A21 SYMMETRY FAILURE;
 - несоответствие оборудования A22 INCONSISTENT EQUIPMENT;
 - отказ генератора A27 GENERATOR FAILURE;
 - неправильная частота сетевого напряжения A28 FREQUENCY FAILURE;
- блокировка/разблокировка функций
 - температурная компенсация напряжения TVC TEMPERATURE VOLTAGE COMPENSATION;
 - ограничение зарядного тока батарей BCC BATTERY CHARGE CURRENT LIMIT;
 - выключение реле LVD при высокой температуре батарей DSB DISCONNECTION AT HIGH TEMPERATURE
 - выключение реле LVD при низком напряжении батарей DSL DISCONNECTION AT LOW VOLTAGE;
 - ускоренный заряд батарей BST BOOST CHARGING;
 - звуковая сигнализация AUD AUDIO ALARM;
- настройка параметров
 - коэффициент температурной компенсации напряжения P01 TVC COEFFICIENT;
 - системное напряжение P06 SYSTEM VOLTAGE;контрольный блок вставлен в другой тип системы электропитания
 - изменение типа системы электропитания HW HARDWARE CHANGED.

24.8.2. Элемент Environment Events – хронология событий окружения системы электропитания

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Events Log > Environment Events**. После выполнения команды откроется таблица, содержащая 200 последних аварийных сигналов.

Окно дает администратору и пользователю возможность чтения (просмотра) следующих данных:

- порядковый номер события (No.);
- код события (**Code**), например, код Ах используется для аварийного сигнала, а Рх для изменения параметра;
- дата и время регистрации события (Туре);
- активность (**Activity**), **On** для регистрации аварийного сигнала, **Off** для снятия аварийного сигнала и выхода из системы, **Enable** для включения (разблокировки) функции или аварийного сигнала, **Disabel** для выключения (блокировки) функции или аварийного сигнала:
- описание события (Description).

К хронологии окружающей среды системы электропитания относятся следующие события:

- аварийные сигналы и блокировки/деблокировки аварийных сигналов
 - пожар A09 FIRE;
 - неисправность оборудования передачи A10 TRANSMISSION EQUIPMENT FAILURE;
 - критически высокая температура окружающей среды A11 CRITICALLY HIGH AMBIENT TEMPERATURE;
 - критически низкая температура окружающей среды A12 CRITICALLY LOW AMBIENT TEMPERATURE;
 - двери 1 открыты A13 OPEN DOOR 1;
 - двери 1 не закрыты на замок A14 UNLOCKED DOOR 1;
 - двери 2 открыты A15 OPEN DOOR 2;
 - двери 2 закрыты на замок A16 UNLOCKED DOOR 2;
 - отказ кондиционера 1 A29 FAILURE OF AIR-CONDITONER 1;
 - отказ кондиционера 2 A30 FAILURE OF AIR-CONDITONER 2;
 - аварийные сигналы, определяемые пользователем, от A40 до A64 USER DEFINED ALARM;
- регистрация в системе/выход из системы;
- блок управления вставлен в другой тип системы электропитания
 - изменение типа системы электропитания HW HARDWARE CHANGED.

24.9. Статистика

Пользователю доступны три различных типа статистики важных электрических значений системы электропитания, а также температуры системы и окружающей ее среды. Возможность отображения статистических данных обеспечивается группой элементов **Statistics**.

В группе содержатся следующие элементы:

- Daily Statistics: служит для отображения ежедневных статистических данных.
- Detail Statistics: служит для отображения подробных статистических данных.
- Battery Statistics: Служит для отображения статистики по разряде и заряде батарей.

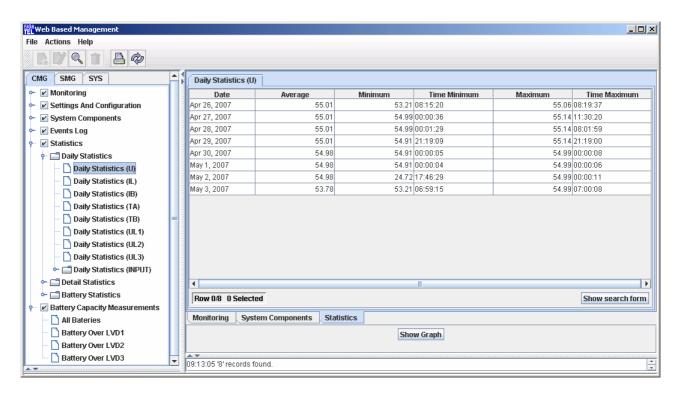
24.9.1. Элемент Daily Statistics – ежедневная статистика

Ежедневная статистика предназначена для регистрации:

- максимального дневного значения и времени, когда оно было измерено;
- минимального дневного значения и времени, когда это значение было измерено;
- средние дневные значения.

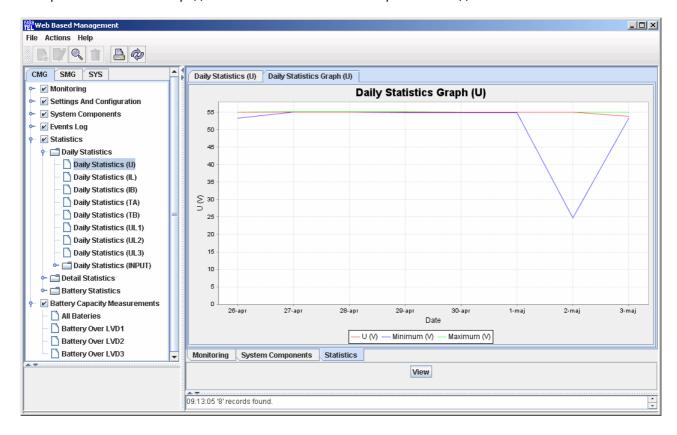
Доступны данные за последние 32 дня.

Пользователю доступны статистики следующих значений:


- U системного напряжения,
- IL тока нагрузки,
- IB тока батарей,
- UL1 сетевого напряжения фазы L1,
- UL2 сетевого напряжения фазы L2,
- UL3 сетевого напряжения фазы L3,
- ТА температуры окружающей среды,
- ТВ температуры батареи,
- INPUT значений, измеряемых с помощью блоков ARL (максимально восемь блоков ARL, с двумя измеренными величинами каждый).

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Statistics > Daily Statistics > Daily Statistics (U)**. После выполнения команды откроется таблица **Daily Statistics (U)**, содержащая данные о системном напряжении U.

Окно дает администратору и пользователю возможность чтения (просмотра) следующих данных:

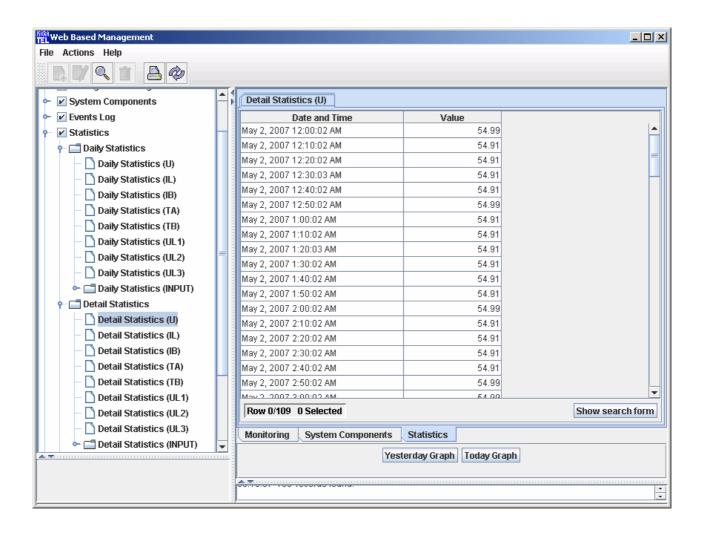

- дата (Date);
- среднее дневное значение (Avarage);
- минимальное дневное значение (Minimum);
- время, когда было достигнуто минимальное дневное значение (Time Minimum);
- максимальное дневное значение (Maximum);
- время, когда было достигнуто максимальное дневное значение (Time Maximum).

Пользователь может щелчком на кнопке **Show Graph** выбрать графическое отображение системного напряжения. На диаграмме три кривые:

- зеленая показывает измеренное максимальное системное напряжение за день,
- синяя показывает измеренное минимальное системное напряжение за день, а
- красная показывает среднее значение системного напряжения за день.

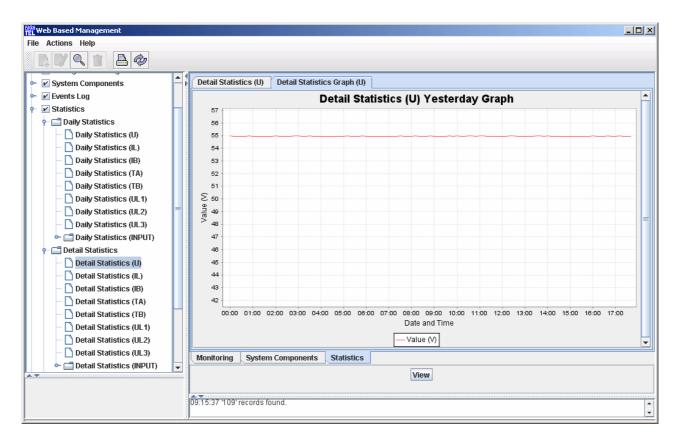
Подобным образом пользователь может просмотреть данные и диаграммы по всем остальным величинам.

24.9.2. Элемент Detail Statistics – подробная статистика


Подробная статистика предназначена для регистрации значений выбранных величин с регулярными 10-минутными интервалами. Доступны данные за предыдущий и текущий день.

Пользователю доступны статистики следующих значений:

- U системного напряжения,
- IL тока нагрузки,
- IB тока батарей,
- UL1 сетевого напряжения фазы L1,
- UL2 сетевого напряжения фазы L2,
- UL3 сетевого напряжения фазы L3,
- ТА температуры окружающей среды,
- ТВ температуры батареи,
- INPUT значений, измеряемых с помощью блоков ARL (максимально восемь блоков ARL, с двумя измеренными величинами каждый).


Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Statistics > Detail Statistics > Detail Statistics** (U). После выполнения команды откроется таблица **Detail Statistics** (U), содержащая данные о системном напряжении U предыдущего и текущего дня.

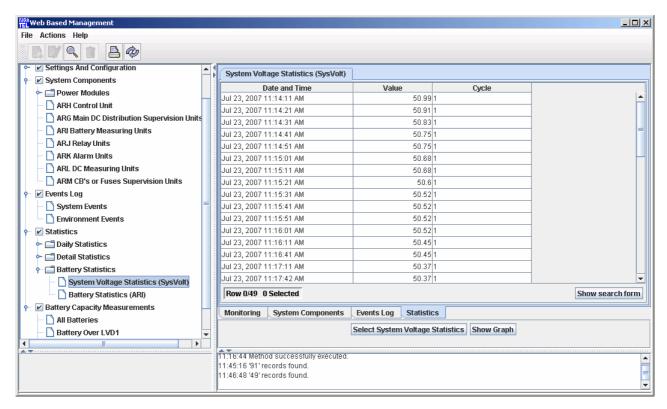
Пользователь может щелчком на кнопке **Yesterday Graph** выбрать графическое отображение системного напряжения предыдущего дня. А щелчком на кнопке **Today Graph** – графическое отображение системного напряжения текущего дня.

Подобным образом пользователь может просмотреть данные и диаграммы по всем остальным величинам.

24.9.3. Элемент Battery Statistics - статистика заряда и разряда батарей

Статистика заряда и разряда батарей служит для регистрации падений системного напряжения и напряжения отдельных аккумуляторов батареи, при которых батарея начнет разряжаться, и повышения их напряжения, когда батарея начнет заряжаться.

Регистрация статистических данных начинается при падении системного напряжения U под предельное значение "низкое напряжение батареи", которое определено величиной, рекомендуемой на заводе (51 В), и прекращается, когда системное напряжение U превысит значение "низкое напряжение батареи" на 3 В.


Частота сбора данных напряжения зависит от времени. В течение первых 2 минут падения и возрастания системного напряжения значения снимаются через каждые 10 секунд, в течение последующих 15 минут значения снимаются через каждые 30 секунд, в течение следующих 60 минут значения снимаются через 5 минут, а позже это делается раз в 30 минут. Максимальное число образцов каждого цикла составляет 200, что является достаточным для 24-часового разряда и 24-часового заряда батареи.

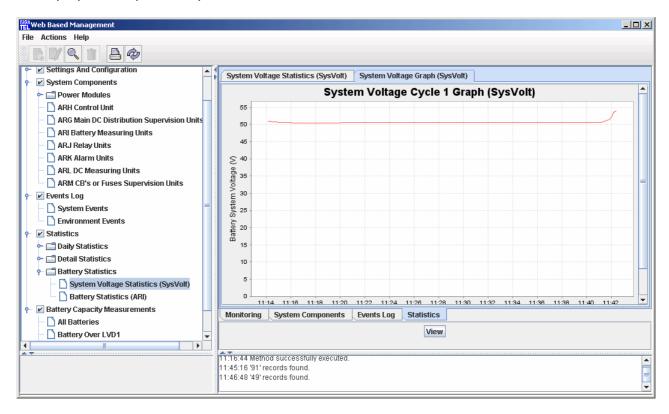
Пользователю доступны данные по колебаниям системного напряжения и напряжению аккумуляторов батарей, контролируемых блоком ARI (максимально 16 блоков ARI, которые контролируют до 8 батарейных аккумуляторов). Сохраняется пять последних циклов заряда и разряда батарей.

24.9.3.1. Статистика системного напряжения

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Statistics > Battery Statistics > System Voltage Statistics (SysVolt)**. После выполнения команды откроется окно **System Voltage Statistics (SysVolt)**, содержащее таблицу с измеренными значениями системного напряжения первого законченного цикла разряда и заряда аккумуляторных батарей.

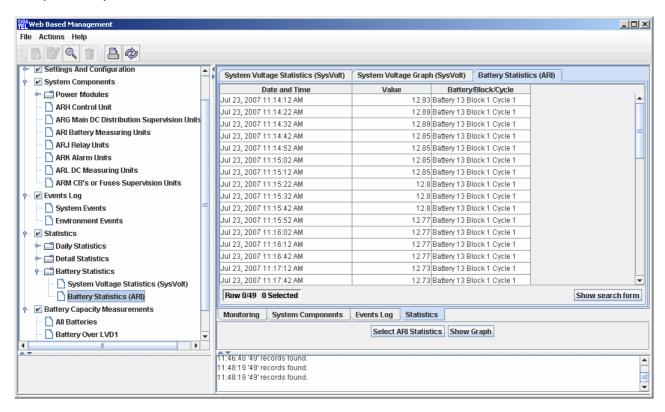
В таблице имеются следующие поля:

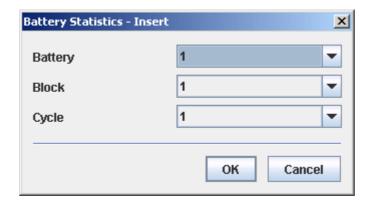
- дата и время (Date),
- значение (Value),
- цикл (Cycle).



Щелчком на кнопке **Select System Voltage Statistic** пользователь выбирает конкретный цикл разряда и заряда батарей для просмотра. У него есть на выбор пять циклов.

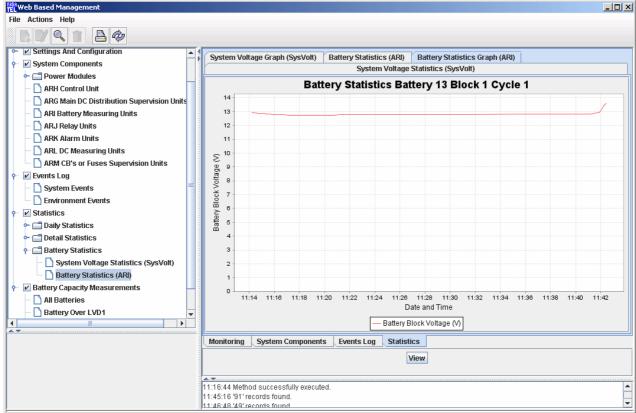
Выбор необходимо подтвердить щелчком на кнопке ОК.


Щелчком на кнопке **Show Graph** пользователь может выбрать графическое отображение одного цикла разряда и заряда батарей.


24.9.3.2. Статистика напряжения аккумулятора батареи

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Statistics > Battery Statistics (ARI)**. После выполнения команды откроется окно **Battery Statistics (ARI)**, содержащее таблицу со значениями напряжения первого законченного цикла разряда и заряда первого аккумулятора батареи, измеренными с помощью блока ARI 1.

Щелчком на кнопке Select ARI Statistic пользователь может выбрать:


- батарею (BATTERIES),
- аккумулятор батареи (Block) и
- цикл разряда и заряда (Cycle).

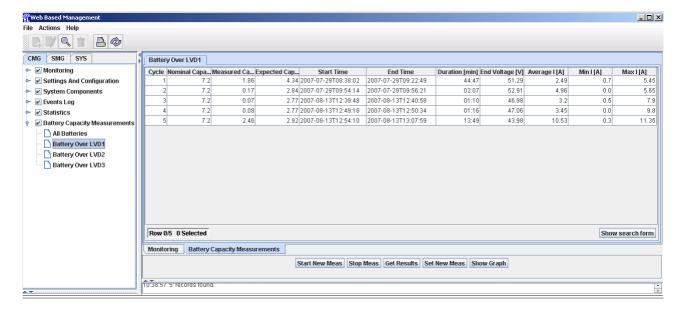
Выбор необходимо подтвердить щелчком на кнопке ОК.

24.10. Измерение емкости батареи

Возможность измерения емкости батареи и просмотра результатов измерений обеспечивается группой элементов **Battery Capacity Measurements**.

В группе содержатся следующие элементы:

- All Batteries: служит для измерения емкости батарей, подключенных через все реле LVD системы электропитания;
- Battery Over LVD1: служит для измерения емкости батарей, подключенных через реле LVD1;
- Battery Over LVD2: служит для измерения емкости батарей, подключенных через реле LVD2;
- Battery Over LVD3: служит для измерения емкости батарей, подключенных через реле LVD3.



Предупреждение!

Во время выполнения измерения емкости батарей, подключенных через реле LVD1, из системы выключаются батареи, подключенные через реле LVD2 и LVD3 (если заданная емкость подключенных через реле LVD2 и LVD3 батарей составляет более 0 А.ч); во время выполнения измерения емкости батарей, подключенных через реле LVD2, из системы выключаются батареи, подключенные через реле LVD1 и LVD3 (если заданная емкость подключенных через реле LVD1 и LVD3 батарей составляет более 0 А.ч), а также во время выполнения измерения емкости батарей, подключенных через реле LVD1 и LVD2 (если заданная емкость подключенных через реле LVD1 и LVD2 составляет более 0 А.час).

Если в системе электропитания через LVD3 подключена нагрузка, нельзя задавать (вводить) емкость батареи LVD3, в противном случае это может привести к отключению нагрузки.

Пользователь в окне веб-приложения **Web Based Management** должен выбрать вкладку функциональной группы CMG и выполнить команду **Battery Capacity Measurements > All Batteries**. После выполнения команды откроется окно **All Batteries**.

Окно дает администратору следующие возможности:

- начать выполнение измерения емкости батарей (Start New Meas);
- прервать выполнение измерения емкости батарей (**Stop Meas**);
- просматривать результаты измерения емкости батарей (Get Results);
- делать настройку параметров, необходимых для измерения емкости батарей (Set New Meas);
- графически отображать емкости батарей (Show graph).

Перед началом измерения администратор должен установить параметры, необходимые для измерения емкости батарей. После щелчка на кнопке **Set New Meas** откроется окно **Battery.** См. Главу «Элемент Battery – параметры батареи»!

В окне **Battery** администратор вводит:

- емкость батареи, подключенной в системе через реле LVD 1, LVD 2 и LVD 3;
- текущий в батарею максимальный ток, допустимый для запуска измерения емкости батареи;
- напряжение системы, до которого выполняется измерение емкости батареи;
- число последовательных измерений емкости батареи;
- коэффициенты батареи k.

После щелчка на кнопке **Start New Meas** администратор начинает измерение емкости батареи. Перед началом измерений должны быть выполнены определенные условия. Если они не выполнены, выводится соответствующее сообщение системы.

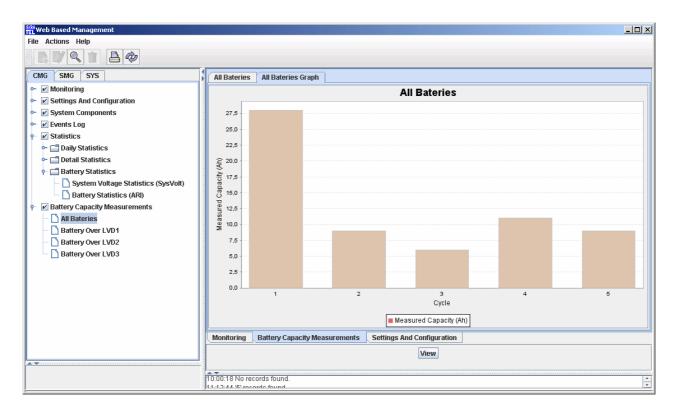
Предварительные условия начала измерения:

- введено соответствующее значение емкости батарей (сообщение DEFINE NOMINAL CAPACITY OF BATTERIES);
- достаточный ток нагрузки (сообщение BAT TEST WAITING LOAD CURRENT TOO LOW);
- напряжение системы равно номинальному выходному напряжению Un ± 0.2 В (сообщение **BAT TEST WAITING BATTERY VOLTAGE IS NOT Un \pm 0.2 V**);
- заряженная батарея (сообщение **BAT TEST WAITING CHARGE CURRENT TOO HIGH**);
- подключенные батареи (сообщение TEST NOT STARTED BATTERIES DISCONNECTED);
- работающие выпрямители (сообщение TEST NOT STARTED DUE TO ALM 07).

Если после последнего разряда батарей прошло менее двух дней, будет выведено предупреждение о том, что возможно батарея не заряжена 100%, поскольку после последнего разряда прошло менее 48 часов. Начало возможно после повторного подтверждения щелчком на кнопке **Yes**.

Если условия выполнены, начинается измерение. Одновременно генерируется аварийный сигнал A17 - BATTERY CAPACITY MEASUREMENT.

Щелчком на кнопке **Stop Meas** администратор может прервать измерение емкости батареи. После этого будет выведено сообщение **BATTERY TEST ABORTED**.


Во время выполнения измерения емкости батареи изменение параметров батареи невозможно. При щелчкеа на кнопке **Set New Meas** выводится предупреждение.

После щелчка на кнопке **Get Results** пользователю откроется окно, в котором он может посмотреть результаты пяти последних циклов измерений емкости батарей. Окно содержит следующие поля:

- Cycle цикл;
- Nominal Capacity [Ah] номинальная емкость батареи;
- Measured Capacity [Ah] измеренная емкость батареи;
- Expected Capacity [Ah] ожидаемая емкость батареи;
- Start Time начало цикла измерения;
- End Time конец цикла измерения;
- Duration [min] продолжительность цикла измерения;
- End voltage [V] напряжение в конце разряда;
- Average I [A] среднее значение разрядного тока;
- Min I [A] минимальное значение разрядного тока;
- Max I [A] максимальное значение разрядного тока.

После щелчка на кнопке **Show graph** пользователю откроется окно **All Batteries Graph** с графическим отображением результатов измерений пяти последних циклов.

Подобным образом пользователь может запустить измерения отдельных емкостей батарей и посмотреть результаты этих измерений.

25. Список сокращений

Сокращение	Английское	Русское
ARH	Control unit	Контрольный блок
ARG	DC distribution control unit	Блок контроля распределения постоянного тока
ARI	Battery blocks measuring unit	Блок измерения напряжения аккумуляторов батареи
ARJ	Relays unit	Блок управления реле
ARK	Alarm unit	Блок сбора аварийных сигналов
ARL	Measuring unit of DC signals	Блок измерения напряжения постоянного тока
ARM	Supervison unit od circuit breakers	Блок контроля автоматических выключателей
BRM	Backplane for optional modules	Задняя панель секции дополнительных преобразователей
BRN	Backplane for MPS1000.200	Задняя панель секции с блоком
BRO	Backplane for MPS1000.50	распределения переменного тока Задняя панель в системе MPS1000.50
BRP	Backplane for MRP	Задняя панель в секции MRP
CDL	Processor unit	Процессорная плата
FRD	Fan unit	Вентиляторный блок
FRJ	AC distribution unit	Блок распределения переменного тока
FRK	Secondary distribution unit 400 A	Вторичный распределительный блок с пробковыми предохранителями 400 А
FRL	Secondary distribution unit 160 A	Вторичный распределительный блок с пробковыми предохранителями 160 A
FRM	Secondary distribution unit – 24 x CB	Вторичный распределительный блок с автоматическими выключателями
FRO	Primary distribution unit for MPS1000.600	Первичный распределительный блок для MPS1000.600
FRP	Batteries distribution unit	Распределительный блок батарей
FRQ	Loads distribution unit	Распределительный блок нагрузок

MN	Management Node	Узел управления
MPS	Modular Power-supply System	Модульная система электропитания
MRD	Rectifier subrack for rectifiers PMP	Секция выпрямителей РМР
MRM	MPS1000 control subrack	Контрольная секция
MRN	MPS1000.200 basic unit	Основная секция системы MPS1000.200
MRO	MPS1000.50 basic unit	Основная секция системы MPS1000.50
MRP	Subrack for invertors and DC/DC converters	Секция дополнительных преобразователей
MRQ	Subrack for rectifiers 1800W	Секция выпрямителей 1800 Вт
MRR	Subrack for rectifiers 3200W	Секция выпрямителей 3200 Вт
MT	Maintenance terminal	Терминал управления
PAH	Rectifier 230V AC/48 V 1800W	Выпрямитель 230 В АС/48 В, 1800 Вт
PAI	Rectifier 230V AC/48 V 3200W	Выпрямитель 230 В АС/48 В, 3200 Вт
PC	Personal Computer	Персональный компьютер
RS232	RS232 Interface	Интерфейс RS232
RS485	RS232 Interface	Интерфейс RS485
VRL	Measuring and supervising unit	Основная плата на блоке ARH
VRM	Display and keys holder	Плата с дисплеем и кнопками
VRN	Battery blocks measuring unit	Плата на блоке ARI
VRO	Relays unit	Плата на блоке ARJ
VRP	Alarm unit	Плата на блоке ARK
VRQ	Measuring unit of DC signals	Плата на блоке ARL
VRR	Supervison unit od circuit breakers	Плата на блоке ARM